
Tracing Werewolf game by using extended BDI model

NIDE, Naoyuki
Faculty, Division of Human Life and Environmental Sciences

Nara Women’s University

Kita-Uoya Nishimachi, Nara, Japan

E-mail: nide@ics.nara-wu.ac.jp

Shiro Takata
Faculty of Science and Engineering

Kindai University

Kowakae 3–4–1, Higashi-Osaka, Japan

Abstract—The werewolf game is a kind of role-playing game
in which players have to guess other players’ roles from their
speech acts (what they say). In this game, players have to
estimate other players’ beliefs and intentions, and try to modify
others’ intentions. The BDI model is a suitable model for this
game, because it explicitly has notions of mental states, i.e.
beliefs, desires and intentions. On the other hand, in this game,
players’ beliefs are not completely known. Consequently, in many
cases it is difficult for players to choose a unique strategy; in
other words, players frequently have to maintain probabilistic
intentions. However, the conventional BDI model does not have
the notion of probabilistic mental states. In this paper, we propose
an extension of BDI logic that can handle probabilistic mental
states and use it to model some situations in the Werewolf game.
We also show examples of deductions concerning that situations.
We believe that this study will serve as a basis for developing a
Werewolf game agent based on BDI logic.

I. INTRODUCTION

AIs for match-type games such as shogi and go have
evolved remarkably. These games are complete information
games in that each player ideally knows all the information
about the current phase of the game. In contrast, in some
games, players can only get incomplete information about the
game. Such games are called incomplete information games,
and the Werewolf game (originally also known as Mafia) is
one such game.

Some attempts have already been made to develop agents
for playing Werewolf, and they typically make use of machine
learning. Yet, we consider that the BDI model is more useful
for developing such agents. In the Werewolf game, due to
the incompleteness of information, players have to estimate
other players’ beliefs and intentions, and try to modify oth-
ers’ intentions. The BDI model is useful for modeling such
circumstances, since it explicitly has notions of mental states
such as beliefs, desires and intentions.

However, the conventional BDI model does not have the
notion of probabilistic mental states, especially probabilistic
intentions. In other words, it is considered normal that a BDI
agent would choose single plan for its goal at a time and form
an intention to commit to the plan. Nonetheless, in Werewolf,
due to the incompleteness of information, it is often the case
that a player has to choose from a number of strategies. For
example, when a player has probabilistic multiple beliefs about
the identity of the wolf, then (s)he may have probabilistic
multiple intentions as to voting for someone, and may not
be able to choose one of them until just before they make the
determination. To handle such a situation, it would convenient
if the BDI model had notions of probabilistic mental states.

Osawa et al.[1] devised a BDI logic with probabilistic
mental states, and used it to model the Werewolf game. They
showed reasoning about the players’ beliefs. However, they did
not give formal semantics or a deduction system. Moreover,
their example did not use probabilistic mental states.

We proposed another extended BDI logic with probabilistic
mental states, gave its formal semantics and deduction system,
and showed several deductions about Werewolf games that
used probabilistic mental states[2, in Japanese]. However, it is
important to capture the process of state transitions to model
the Werewolf game, since it reflects the thinking processes of
players. In particular, one agent’s beliefs should be able to be
modified by another agent’s speech acts, i.e. be affected by
what the other agent says. Yet, our study mentioned above did
not include any examples of this.

In this paper, we show examples of deductions in our logic
system, including representations of agents’ speech acts and
state transitions caused by them. Our logic system, called
TOMATOes-P, is an extension of TOMATO[3], which we
previously proposed and is itself an extension of the BDI logic.
We aim to develop agents for playing Werewolf games based
on reasoning, and we believe that this study to be a first step
toward this goal.

II. EXTENDED BDI LOGIC

In this section, we introduce our modal logic system
TOMATOes-P (TOMATOextended with Event Selection and
Probabilistic mental states). It is an extension of TOMATO[3]
(Theoretical Observation of Multi-Agent system with Tense
and Odds) obtained by adding probabilistic mental state oper-
ators and event selectability operator.

For simplicity, in regard to mental state consistencies[4],
which are considered to be important properties of autonomous
agents modeled in the BDI model, we only consider part of
them in this paper. To be precise, we do not consider “realism”
or any properties derived from it, such as “asymmetry thesis”;
e.g. “an agent who does not believe a goal to be eventually
achievable will not intend to eventually achieve that goal”.
We only take into account the introspection axioms; e.g. “any
agent has complete beliefs about its mental states”1.

1TOMATO considers neither realism nor introspection axioms. While our
previous work TOMATOes[5] considers both of them, it does not consider
probabilistic desires or intentions.

2016 International Conference on Agents

978-1-5090-3931-9/16 $31.00 © 2016 IEEE

DOI 10.1109/ICA.2016.28

7

A. Syntax

Here, we define the formulas in TOMATOes-P. Here-
inafter, the word “formula” means one of TOMATOes-P
unless expressly stated otherwise. Symbols like x and y are
used as the usual variable symbols in first-order predicate
logic, while symbols such as X and Y are variable symbols
that express formulas. We call the latter “formula variable
symbols”. They are mainly used with fixed-point operators.

We choose and fix a first-order language L, an infinite set
of formula variable symbols V , a finite set of event constant
symbols E and a finite set of agent constant symbols A.
Hereafter, we write {p | 0 � p � 1} as [0, 1].

We define formulas as follows.

• Any atomic formula in L is a formula (in TOMATOes-
P).

• If φ, ψ are formulas and x is a variable symbol in L,
then φ ∨ ψ, ¬φ and ∀xφ are formulas.

• If e ∈ E , then pos(e) is a formula.

• If Op is one of Xe (where e ∈ E), BELa, DESIREa

and INTENDa (where a ∈ A), and n is a positive
integer, and for i = 1, 2, · · · , n, φi is a formula, pi ∈
[0, 1], ri ∈ {�, >}, then Op(r1p1 φ1 | · · · |rnpn φn) is a
formula. In particular, if n = 1, we omit the outermost
parentheses. We call the pi in this item probability
parameters.

• If X ∈ V , then X is a formula.

• If φ is a formula, X ∈ V , and X does not occur
negatively in φ, then μX.φ is a formula. Here, “occur
negatively” means that there are odd numbers of ¬’s
in the path from the root of the tree structure of φ
to the occurrence of that X. μ is the least fixed-point
operator.

In addition, we introduce operators such as ∧, ⊃, ⇔ and ∃
as abbreviations in the usual manner, and set standard priority
order among operators (e.g. unary operators combine first, ∧
combines before ∨, ⊃ is right associative, and parentheses
changes priorities).

For example, BELa(�0.3 φ1 | �0.5 φ2) is a formula. Intu-
itively, this formula means “agent a believes φ1 with proba-
bility of at least 0.3, and as another possibility, believes φ2

with probability of at least 0.5”. DESIREa and INTENDa

are similarly interpreted. Xe is an extension of the next-time
operator AX in CTL (computation tree logic) with an event
e and transition probabilities; for example, Xe�.3 φ1 intuitively
means that if an event e occurs, then at the next time point,
φ1 holds with probability of at least 0.3. In addition, pos(e)
intuitively means “event e can be executed now”.

BELa<p φ, BELa=p φ etc. are treated as abbreviations of

BELa�1−p ¬φ and BELa�p φ∧¬BELa>p φ, etc. The same goes

for Xe, etc.

Additionally, we abbreviate BELa�1 φ as BELa φ, which
denotes a usual (i.e. without probability) belief of agent a
(the same goes for DESIREa and INTENDa). Moreover, we
abbreviate Xe�1 φ as AXe φ, and

∧
e∈E(pos(e) ⊃ AXe φ) as AX

φ. Accordingly, AXφ denotes “for any possible event between
the current time and the next time point, φ holds at the latter”,
and this corresponds to the AX operator of CTL. Because it has
the AX operator and a fixed-point operator μ, TOMATOes-P
is more expressive than CTL* as a temporal logic. Hereafter,
we will assume that all operators of CTL have already been
introduced as abbreviations (e.g. AGφ is an abbreviation of
¬μX.(¬φ ∨ ¬AX¬X)).

B. Semantics

1) BDI structure: First we choose and fix the following:

• A set of possible worlds W (= ∅)
• For each w ∈W , a set of states Stw(= ∅)
• For each w ∈ W and each t ∈ Stw, an interpreta-

tion iw,t of L. We assume that the domain and the
interpretation of terms are the same for all w and t.

• For each w ∈ W and each t ∈ Stw, an non-empty
subset posw,t of E

• For each w ∈ W and each e ∈ E , a function Rew :
St2
w → [0, 1] where

∑
t′∈Stw

Rew(t, t
′) = 1 for any

t ∈ Stw

• For each a ∈ A and each t ∈ ⋃
w∈W Stw, (hereafter,

we write {w | t ∈ Stw} as Wt) functions Bta, Dt
a,

Ita :W 2
t → [0, 1] which satisfy:

� for each w ∈ Wt,
∑
w′∈Wt

Bta(w,w′) = 1,

and similar for Dt
a, Ita

� for each w,w′ ∈ Wt which satisfy Bta(w,
w′) > 0 and each w′′ ∈ Wt, Bta(w,w′′) =Bta(w′, w′′), Dt

a(w,w
′′) = Dt

a(w
′, w′′) and

Ita(w,w′′) = Ita(w′, w′′)
We call a tuple of the above-mentioned components a BDI
structure. Intuitively, a state corresponds to a time point in
temporal logic, and a possible world is a time tree of states
whose edges are {(t, t′) | there is some e ∈ posw,t where
Rew(t, t

′) > 0}. posw,t is a set of events which can be currently
executed, and Rew(t, t

′) = p means that if an event e is
executed at state t, the next time is t′ with probability p.
Bta, Dt

a, and Ita are accessibility relations (with possibilities)
between possible worlds, which represent the belief, desire and
intention of agent a with possibilities at time t. Bta(w,w′) > 0
roughly corresponds to the existence of the accessibility rela-
tion w Bta w′ in the usual Kripke semantics.

2) Interpretation of formulas: Hereafter, we write {(w, t) |
w ∈ W, t ∈ Stw} as Swt . Given a BDI structure M and a
function fV : V → 2Swt , we define the interpretation [[φ]]〈M,fV〉
of a formula φ as follows (note that [[φ]]〈M,fV〉 � Swt). We say

that φ holds at a state t of a world w when [[φ]]〈M,fV〉 � (w,
t). If [[φ]]〈M,fV〉 = Swt for any M and fV , we say that φ is
valid.

• If φ is an atomic formula, [[φ]]〈M,fV〉 = {(w, t) | φ is

true w.r.t. iw,t}
• [[φ ∨ ψ]]〈M,fV〉 = [[φ]]〈M,fV〉 ∪ [[ψ]]〈M,fV〉

• [[¬φ]]〈M,fV〉 = Swt \ [[φ]]〈M,fV〉

8

• [[∀xφ]]〈M,fV〉 =
⋂
u∈U [[φ]]〈M [x:=u],fV〉 where M [x :=

u] is a BDI structure obtained by replacing the inter-
pretation of x in M with u

• [[pos(e)]]〈M,fV〉 = {(w, t) | posw,t � e}
• [[Xe(r1p1 φ1 | · · · | rnpn φn)]]〈M,fV〉 = {(w, t) | for i =

1, · · · , n, there are mutually disjoint sets T1, · · · , Tn
that satisfy the following}

� Ti � {t′ | (w, t′) ∈ [[φi]]〈M,fV〉}
� (

∑
t′∈Ti

Rew(t, t
′)) ri pi (note that each r1,

· · · , rn is � or >)

• [[BELa(r1p1 φ1 | · · · | rnpn φn)]]〈M,fV〉 = {(w, t) | for

i = 1, · · · , n, there are mutually disjoint sets W1, · · · ,
Wn that satisfy the following}

� Wi � {w′ | (w′, t) ∈ [[φi]]〈M,fV〉}
� (

∑
w′∈Wi

Bta(w,w′)) ri pi
• The same goes for DESIREa and INTENDa

• If X ∈ V , [[X]]〈M,fV〉 = fV(X)

Accordingly, a formula φ, with (or without) free occurrences
of a formula variable symbol X, can be regarded as a function
fφ : Swt → Swt , which receives an interpretation of X as
an argument and returns an interpretation of φ. Therefore, we
define that

• [[μX.φ]]〈M,fV〉 is the least fixed-point of fφ.

Here, the least fixed-point exists since fφ in this case is
monotonic by definition[6].

From the properties of Bta, Dt
a and Ita, the introspection ax-

ioms hold; i.e. if Op is one of BELa, DESIREa or INTENDa

, then Op(r1p1 φ1 | · · · |rnpn φn)⇔ BELa Op(r1p1 φ1 | · · · |rnpn

φn) is valid.

C. Deduction system

In this section we describe the deduction system of
TOMATOes-P using sequent calculus.

We identify α-equivalent formulas. We regard the left side
of “→” of a sequent as a (finite) multi-set of formulas, and
likewise for the right side (thus we do not have the exchange
rule). Hereafter, we sometimes enclose a whole sequent in []
to clarify the range of the sequent in the text.

We will use capital Greek letters (Σ, Δ etc.; including
letters with a hash such as Σ′, and Δ′) to denote multi-sets of
0 or more formulas.

1) Inference rules: Now let us enumerate the inference
rules. Note that there are two more rules described in Sec.
II-C2.

In the ∀L rule, t is an arbitrary term. In the ∀R rule, y is
a variable symbol that does not occur freely in the conclusion
of the rule. In the evAll rule, {e1, · · · , en} is equivalent to E .

In the Opexcl, Op�R and Op>R rules, Op may be one of

Xe, BELa, DESIREa or INTENDa (and must be same for one
application of this rule). Opexcl rule means that any subformula
of the form shown in the assumption anywhere in the sequent
can be replaced by the formula shown in the conclusion. In this

rule, n � 2, and for i = 1, · · · , n, ψi is Xi ∧
∧

1�j�n,i �=j ¬Xj
where X1, · · · ,Xn are formula variable symbols that do not
freely occur in the conclusion of the rule. This rule is provided
so that we can decompose formulas in the form of Op(· · ·|· · ·)
into those in the form of Op r1p1 φ, by inversely applying it.

2) Additional inference rules: Here we set Op to be one of
Xe, BELa, DESIREa or INTENDa. Let Γ = {Op r1p1 ψ1, · · · ,
Op rnpn ψn}, where each r1, · · · , rn is � or >, and Q = {ψ1,
· · · , ψn}.

We say that a set Z = {Q1, · · · , Qm} (where each Qi is
a subset of Q) is a satisfaction request set (SRS) of Γ iff the
following m-variable linear simultaneous inequation has any
solution.

⎧⎨
⎩

∑
1�j�m xj = 1

xj > 0 (for 1 � j � m)

(
∑

1�j�m,ψi∈Qj
xj) ri pi (for 1 � i � n)

Then, Γ is satisfiable iff there is an SRS Z of Γ where each
element of Z are satisfiable. For example, if Γ = {Xe1�0.3

ψ1,
Xe1�0.4

ψ2,X
e1
�0.6

ψ3} and Z = {{ψ1, ψ2}, {ψ3}}, Z is an SRS

of Γ. If {ψ1, ψ2} and ψ3 are both satisfiable, so is Γ.

If, for Z,Z ′ ⊂ 2Q, some Q ∈ Z and Z ′′ ⊂ 2Q exist and
Z ′ = (Z ∪ Z ′′) \ {Q} holds, we write Z � Z ′. We call Z an
essential SRS (eSRS) of Γ if Z is an SRS of Γ and there is no
SRS Z ′ of Γ which satisfies Z � Z ′. It is easy to show that Γ
is satisfiable iff there is an eSRS Z of Γ and each element of
Z is satisfiable. In other words, Γ is unsatisfiable iff for any
eSRS Z of Γ, there is an unsatisfiable element of Z.

Let Z1 = {Q1,1, · · · , Q1,m1}, · · · , Zk = {Qk,1, · · · ,
Qk,mk

} be the enumeration of all eSRSs of Γ. Then for any
sequence of positive integers j1, · · · , jk, where 1 � j1 � m1,
· · · , 1 � jk � mk, the following is an inference rule of
TOMATOes-P, provided that Op is one of Xe, DESIREa or
INTENDa.

Q1,j1 → · · · Qk,jk →
Γ→ XDI-KD

If Op is BELa, the following is an inference rule. Here Σ is
a multi-set of formulas whose top-level operator is DESIREa

or INTENDa (with the same agent a). Γ and Σ remain in the
assumption so as to make the introspection axioms provable.

Γ, Q1,j1 ,Σ→ · · · Γ, Qk,jk ,Σ→
Γ,Σ→ BEL-KD45-DI

If we want to consider the realism property, we have to
modify these rules. It will be our future work.

3) Provability: A sequent S is said to be derivable from
a set L of sequents if S ∈ L, or there is an inference rule
S1, · · · , Sn

S
(n � 0) and all of S1, · · · , Sn are derivable from

L.

We say that a sequent S is provable if one of the following
conditions is satisfied. Here φn(X) is defined as φ0(X) = X
and φn(X) = φ[X := φn−1(X)].

1) S is derivable from ∅.

9

φ→ φ
Initial

Σ→ Δ

Σ,Σ′ → Δ,Δ′
Weak

Σ, φ, φ→ Δ

Σ, φ→ Δ
CL

Σ → Δ, φ, φ

Σ→ Δ, φ
CR

Σ→ Δ, φ

Σ,¬φ→ Δ
¬L

Σ, φ→ Δ

Σ→ Δ,¬φ ¬R
Σ, φ→ Δ Σ, ψ → Δ

Σ, φ ∨ ψ → Δ
∨L

Σ→ Δ, φ, ψ

Σ→ Δ, φ ∨ ψ ∨R
Γ, φ[X := μX.φ] → Δ

Γ, μX.φ→ Δ
μL

Γ → Δ, φ[X := μX.φ]

Γ → Δ, μX.φ
μR

Γ,Op �1−p ¬φ→ Δ

Γ→ Δ,Op �p φ
Op�R

Γ,Op >1−p ¬φ→ Δ

Γ → Δ,Op >p φ
Op>R

Σ, φ[x := t] → Δ

Σ, ∀xφ→ Δ
∀L

Σ→ Δ, φ[x := y]

Σ → Δ, ∀xφ ∀R → pos(e1), · · · , pos(en)
evAll

· · · Opr1p1(φ1 ∧ ψ1) ∧ · · · ∧ Oprnpn(φn ∧ ψn) · · ·
· · · Op(r1p1 φ1 | · · · | rnpn φn) · · · Opexcl

Fig. 1. Inference rules of TOMATOes-P

2) S = [Σ, μX.φ → Δ] where X does not occur freely
in Σ,Δ, and there is a positive integer n s.t. [Σ,
φn(X)→ Δ] is derivable from {[Σ,X → Δ]}.

The soundness of TOMATOes-P can be proved just like
in [3] and is relatively easy. We also expect that we can show
the completeness of TOMATOes-P. We guess that the proof
is similar to the sketch we gave in our previous study[5].

III. MODELING WEREWOLF

In this section, as an example of actual Werewolf play, we
select a story written in [7] and show some descriptions and
proofs, though rather simple, about the game process near the
end of the story. The story is a description of a Werewolf match
between AIs, and the AI Werewolf Project submitted this story
to the 3rd Hoshi-Shin’ichi award of Nikkei Inc. as “a novel that
an AI was involved in writing”. However, to make the story
in the style of SF, the terminology of the Werewolf game was
replaced with other words; e.g. “werewolf” was changed into
“AI”, “seer” into “analyst”, etc. In the following, we turn those
words back into the original ones. Note that the spoiler of the
story is included hereafter.

A. Representing some situation

Near the final stage of the game, five players (out of ten)
are still alive; player1 (medium), player2 (confessed2 to being
a seer, but is actually a lunatic3), player4 (villager), player6
(werewolf) and player9 (villager). As the game progresses, the
players come to believe that there is only one werewolf alive.
Though this belief is actually uncertain, for simplicity, we will
assume that the players are certain in this belief.

One day, player2 says that (s)he has divined player4 and
that player4 is a werewolf. However, in the past, player5 (who
has confessed to being a seer, and was already executed) said
that player4 is a human.

So the village has to make a decision whether to believe
player2 as a seer and execute player4 or to doubt player2 as a
werewolf and execute him/her. We can describe this situation
as follows. AX operator denotes the next day, and executed
denotes “executed yesterday”.

BELa(seer(player2) ⊃
AX(executed(player4) ⊃ village win)) (1)

BELa(wolf (player2) ⊃
AX(executed(player2) ⊃ village win)) (2)

BELa�0.8 (lunatic(player2) ⊃
AX(¬executed(player2) ⊃ village lose)) (3)

2This action is also called “coming out”.
3Also called “possessed”.

φ→ φ ψ → ψ

φ ⊃ ψ,¬ψ,¬¬φ→ classic

BELa�.9(φ ⊃ ψ),BELa ¬ψ,BELa>.1 ¬¬φ→
BEL-KD45-DI

+ Weak

BELa�.9(φ ⊃ ψ),BELa ¬ψ → BELa�.9 ¬φ
Op�R

→ BELa�.9(φ ⊃ ψ) ∧ BELa ¬ψ ⊃ BELa�.9 ¬φ
classic

Fig. 2. Proof of formula (4)

Formula (3) represents that if player2 is a lunatic, then
(since the werewolf is very likely to know it) unless (s)he
is executed, tomorrow the werewolf will collude with him/her
and the villagers’ side will likely lose. 0.8 in that formula may
not be accurately 0.8, but will be some relatively large value.

B. Inferences using mental state operators with probability

At this time, player6 says that “if player2 were a werewolf,
a lunatic would very likely support a werewolf in some way,
but actually no such action has been observed”. Viewing this
speech as a decisive factor, many players vote for player4, and
as a result, player4 is executed. Here we write “player x has
acted by supporting a werewolf in some way” as support(x).
Accordingly, “since no support action by a lunatic has been
observed, maybe player2 is not a werewolf” is represented as
follows.

BELa�.9 (wolf (player2) ⊃ ∃x support(x)) ∧
BELa ¬∃x support(x)
⊃ BELa�.9 ¬wolf (player2) (4)

This formula can be proved as in Fig. 2. Here, for sake of
readability, we have replaced some subformulas with φ, ψ etc.
and displayed some applications of rules in a bundled manner
(the same goes for the proofs hereafter). The application of
BEL-KD45-DI depends on the fact that the only eSRS of
{BELa�.9 (φ ⊃ ψ),BELa�1 ¬ψ,BELa>.1 ¬¬φ} is {{φ ⊃ ψ,¬ψ,
¬¬φ}}.

In this game, most players commonly have the belief that
either player2 or player5, each of which has confessed to being
a seer, is highly likely to be a werewolf. As a result, at this
time most players apparently think that player2 is either a seer
or a werewolf. Given this belief, together with the result from
formula (4), one can conclude that player2 is likely to be a
seer. This process can be represented as follows and is proved
in Fig. 3.

BELa�.8 (wolf (player2) ∨ seer(player2)) ∧
BELa�.9 ¬wolf (player2)
⊃ BELa�.7 seer(player2) (5)

10

φ→ φ ψ → ψ

φ ∨ ψ,¬φ,¬ψ → classic

BELa�.8(φ ∨ ψ),BELa�.9 ¬φ,BELa>.3 ¬ψ →
BEL-KD45-DI

+ Weak

BELa�.8(φ ∨ ψ),BELa�.9 ¬φ→ BELa�.7 ψ
Op�R

→ BELa�.8(φ ∨ ψ) ∧ BELa�.9 ¬φ ⊃ BELa�.7 ψ
classic

Fig. 3. Proof of formula (5)

In addition, we can write some of the strategies for vote
of the players on the villagers’ side (if determining which
player to execute is directly linked to winning or losing the
next day, vote for that player) as follows. Here pos only(e)
is the abbreviation for pos(e) ∧ ∧

e′ �=e ¬pos(e′) and denotes
“choose e as the action”. In this case, we can prove (in a
similar way to the proofs described above, though the proof
is somewhat long) that if BELa�.7 seer(player2) and formulas
(1), (6) hold, then INTENDa�.7 pos only(vote for player4)
holds. In addition, if BELa�.05 wolf (player2) also holds, then
INTENDa�.05 pos only(vote for player2) is inferred. In this
way, we can express the situation that if someone cannot get a
certain belief then (s)he can hardly decide on a single intention.
In the original BDI model, such situation cannot be expressed
(an agent always chooses a single intention for one goal at a
time).

BELa�p AX(executed(playerN) ⊃ village win) ⊃
INTENDa�p pos only(vote for playerN) (6)

BELa�p AX(¬executed(playerN) ⊃ village lose) ⊃
INTENDa�p pos only(vote for playerN) (7)

In this game, as player2 is actually a lunatic, the villagers’
side loses in the course of formula (3). If there was a player
who emphasized the possibility that player2 was a lunatic and
had a belief like BELa<.5(wolf (player2) ∨ seer(player2)),
then through a process like formula (3), the chances that
player2 is a seer would be low for him/her, and (s)he would
have chosen a different way of voting.

C. Nested mental state operators

A belief of an agent that “if player2 is a lunatic, then the
werewolf is very likely to know it”, which was previously
referred to, can be represented as formula (8) by using nested
mental state operators. Here σ is ∀x(wolf (x) ⊃ BELx lunatic
(player2)). In addition, a belief that “the next day, if σ holds,
then villagers’ side will lose unless player2 is executed” can
be represented as formula (9). We can prove that (3) can be
inferred from formula (8) and (9). We will omit the details of
the proof, but some small fragments of the proof is shown in
Fig. 4 (where E = {e1, · · · , en}).

BELa�.8 (lunatic(player2) ⊃ AGσ) (8)

BELa AX(σ ∧ ¬executed(player2) ⊃ village lose) (9)

It is also possible to handle an agent’s desires and inten-
tions about other agents’ mental states. Here, if the werewolf
actually knows that player2 is a lunatic, (s)he can lead the
game into a win for the werewolves by making other players
not vote for player2. In the situation described above, to do
so, one can state that player2 is not a werewolf. This can

Σ, ξ,AX AG ξ → Δ
Σ→ Δ,¬ξ ∨ ¬AX AG ξ

classic

Σ→ Δ, μX.(¬ξ ∨ ¬AX¬X)
μR

Σ,AG ξ → Δ classic

ξ1, ξ2 → ζ

ξ1, ξ2,¬ζ → ¬L

AXe1ξ1,AXe1ξ2,Xe1
>0¬ζ → XDI-KD · · ·

ξ1, ξ2 → ζ

ξ1, ξ2,¬ζ → ¬L

AXenξ1,AXenξ2,Xen
>0¬ζ → XDI-KD

AX ξ1,AX ξ2 → AX ζ
Op�R

etc.

Fig. 4. Parts of proof of formula (8) ∧ (9) ⊃ (3)

explain the behavior of player6 in the actual play. Formula
(10) represents this behavior.

DESIREplayer6

∀x(human(x) ⊃ BELx ¬wolf (player2)) (10)

D. State transition

Here we abbreviate μX.(
∧
a∈A BELa(φ∧X)) as M-BELφ

(φ is a mutual belief among all agents) and μX.(φ∧ψ∨¬ψ∧AX
X) as A(φNψ) (φ holds the next time ψ holds; N is regarded
as the “atnext” operator).

Thus far, we have used the AX operator to denote “the next
day”. However, to capture the process of modifying beliefs by
agents’ speech acts, a state transition caused by each speech
act has to be described. So, from here on, we will use the
AX operator to denote the progress of one step in the game,
e.g. one speech act of an agent, vote for execution, start of a
new day, etc. In this case, “φ will hold the next day” can be
written as A(φN daystart) where daystart is “a new day has
just started”.

We treat speech acts as events. However, syntactically, the
set of events has to be finite (Sec. II-A). For this reason (and
for simplicity), we choose some sufficiently large finite set SA
of formulas, and limit the set of the contents of the speech acts
to SA.

Again for simplicity, we will consider only the “inform”
type of speech acts defined in FIPA[8]. We write “agent a says
φ (∈ SA) to the set of agents A” as inform(a,A, φ) and treat
this as an event. (From the aspect of the implementation, a
logic programming language such as Prolog often does such
a thing, i.e. treats a formula as data.) If A = A (the set of
all agents), we simply write inform(a, φ) (this is a common
case in the Werewolf game). We assume that each agent works
so as to satisfy the following formula (where done(e) denotes
“event e has just occurred”):

∧
inform(a,φ)∈E(pos(inform(a, φ)) ⊃
AXinform(a,φ) M-BELdone(inform(a, φ))) (11)

i.e. when someone says something, the fact that (s)he says so
becomes a common belief. We also assume that the following
formula holds; when an agent a intends to do the action e, then
e is actually executed. This is regarded as a basic property of
BDI agents.

∧
e∈E(INTENDa pos only(e) ⊃ pos only(e)) (12)

When an agent hears someone say something, (s)he decides
whether to modify his/her belief in his/her own way. Here

11

V
a∈A BELa(done(ε) ∧ M-BELdone(ε))→ BELa done(ε)

M-BELdone(ε) → BELa done(ε)
μL

AXε M-BELdone(ε) → AXε BELa done(ε)
XDI-KD etc.

pos only(ε), pos(ε) ⊃ AXε M-BELdone(ε)→ AX BELa done(ε)
classic

etc.

Fig. 5. Part of proof of formula appeared in Sec. III-D

we assume that when player6 says (φ ⊃ ψ) ∧ ¬ψ (where
φ ≡ wolf (player2) and ψ ≡ ∃x support(x)), some player a
accepts φ ⊃ ψ with certainty level � 0.9 and ¬ψ with certainty
1. That is, a runs so as to satisfy formula (13) described below,
where ε is an event inform(player6 , (φ ⊃ ψ) ∧ ¬ψ).

BELa done(ε) ⊃ BELa�.9(φ ⊃ ψ) ∧ BELa ¬ψ (13)
∀x∀t(BELarp wolf (x) ∧ mod bel ∧ time(t) ⊃

A(BELarp wolf (x) U ρ)) (14)
where ρ ≡ (mod bel ∧ ∃t′(time(t′) ∧ t < t′))

Additionally, we assume that a runs so as to satisfy
also formula (14) described above, where time is a system
predicate to get the current time, and that when a wants to
modify his/her belief about the werewolf because (s)he has
gotten a new information, (s)he makes mod bel hold. Here r is
an arbitrary comparison operator and p is an arbitrary element
of [0, 1]. In other words, an estimate about the werewolf is
retained over time until a attempts to modify it by making
mod bel hold.

Suppose that a is neutral about the success or failure of φ,
i.e. BELa=.5 φ. If player6 satisfies θ and θ ⊃ INTENDplayer6

pos only(ε) where θ is formula (10) and ε is an event
described above, then the event ε occurs. Accordingly, BELa�.1
φ holds the next time (by formula (4)), and if a makes mod bel
hold at the same time, this belief is retained until another
estimation is obtained. Regarding these beliefs as states, we
can express the process of state transitions caused by another
agent’s speech act in this way.

We can prove θ ∧ (θ ⊃ INTENDplayer6 pos only(ε)) ∧
formula (12) ∧ (11) ∧ AG (13) ⊃ AX BELa�.1 φ. The proof of
this formula is again omitted, but we show a small fragment
of the proof in Fig. 5. We can also prove AX BELa�.1 φ ∧ AG
(formula (14)) ⊃ AX ∀t(mod bel ∧ time(t) ⊃ A(BELa�.1 φ U
ρ)).

IV. DISCUSSION

In this paper, we only showed that an inference rule can
be used to prove some properties. In general, the existence
of a deduction system does not mean the existence of an
algorithm which infers goals efficiently. To create a logic-based
practical AI Werewolf engine, we need to devise an algorithm
to generate goal candidates to be inferred and infer those goals
in a realistic amount of time. It might be desirable to have an
ability to exclude goals which are not likely to hold from the
candidates, instead of ensuring completeness.

There have already been a number of attempts to realize
an AI Werewolf; some of them use machine learning. For
example, [9] uses SVM to estimate werewolves. However, one
can imagine that the best part of the Werewolf game is enjoying
the process of logical thinking rather than being concerned
about winning or losing. Given such a stance, one can expect
that if a logic-based AI Werewolf engine with enough skill can

be realized, by outputting its thought processes and decision
making during the game, we can enjoy looking back on
episodes in the game after it has finished.

Apart from the application to the Werewolf game, there
have been studies on extended BDI model with probabilistic
mental states. For instance, Ma et al.[10] propose a framework
for probabilistic plan selection under beliefs with uncertainty.
Coelho et al.[11] proposes an integration of symbolic and prob-
abilistic approaches for agent programming on Jason[12], an
interpreter and development environment for AgentSpeak(L).
However, unlike these studies, our approach is logic-based
and thinking processes including probabilities are directly
expressed as deductions. This feature is considered to be
suitable for applications that require logical thought.

V. CONCLUSION

Using an extended BDI logic with probabilistic mental
states, we attempted to describe the processes of decision
making with probabilistic intentions, and prove certain prop-
erties of players in the Werewolf game. Our future work will
include developing an algorithm to generate goal candidates
to be inferred and to infer those goals in a realistic amount of
time, as described in Sec. IV, with the ultimate goal being
the realization of a logic-based Werewolf agent. From the
aspect of logic systems, we should also take into account the
“realism” property (→ Sec. II) and prove the completeness of
TOMATOes-P.

REFERENCES

[1] H. Osawa, F. Toriumi, M. Inaba, D. Katagami, K. Kajiwara, and
K. Shinoda, “Agent’s reasoning model for achieving aiwolf,” in Proc. of
19th Game Programming Workshop, 2014, pp. 157–161, (In Japanese).

[2] N. Nide and S. Takata, “Stochastic strategy of agents with uncertain
beliefs and BDI model,” in Proc. of 30th Annual Conference of JSAI,
2016, (In Japanese).

[3] N. NIDE, S. Takata, and M. Fujita, “BDI logic with probabilistic
transition and fixed-point operator,” in Proc. of CLIMA ’09, 2009, pp.
71–86.

[4] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a BDI-
architecture,” in Readings in Agents, M. N. Huhns and M. P. Singh,
Eds. Morgan Kaufmann, San Francisco, 1997, pp. 317–328.

[5] N. Nide, S. Takata, and M. Fujita, “Modeling cooperative actions using
an extended BDI logic TOMATOes ,” Transactions of the Japanese
Society for Artificial Intelligence, vol. 26, no. 1, pp. 13–24, 2011, (In
Japanese).

[6] A. Tarski, “A lattice-theoretical fixpoint theorem and its application,”
Pacific Journal of Mathematics, vol. 5, pp. 285–309, 1955.

[7] AI Werewolf Project, “Are you an AI? TYPE-S,” http://aiwolf.
org/control-panel/wp-content/uploads/2016/03/YASAI2015
0930_Short.pdf, 2016, (In Japanese).

[8] IEEE Foundation for Intelligent Physical Agents, “FIPA commu-
nicative act library specification,” http://www.fipa.org/specs/
fipa00037/SC00037J.html, 2002.

[9] K. Kajiwara, F. Toriumi, M. Inaba, H. Osawa, D. Katagami, K. Shinoda,
H. Matsubara, and Y. Kano, “Development of AI wolf agent using SVM
to detect werewolves,” in Proc. of 30th Annual Conference of JSAI,
2016, (In Japanese).

[10] J. Ma, W. Liu, J. Hong, L. Godo, and C. Sierra, “Plan selection for
probabilistic BDI agents,” in Proc. of ICTAI 2014, 2014, pp. 83–90.

[11] F. Coelho and V. Nogueira, “Probabilistic selection in AgentSpeak(L),”
Computer Research Repository, vol. abs/1409.3717, 2014.

[12] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

12

