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Abstract. One of the advantages of the BDI (Belief-Desire-Intention) model is
that we can formally discuss and prove properties about the mental states (beliefs,
desires and intentions) and behaviors of rational agents using a modal logic called
BDI logic. However, various extensions, such as probabilistic state transitions in
reinforcement learning and cooperative acts in multi-agent environments, have
been attempted in the BDI model. Since those notions are difficult to treat pre-
cisely in traditional BDI logic, the advantage of formalization in BDI logic is di-
minished. In this paper, we propose an extension of BDI logic, calied {0,

which introduces probabilistic state transitions and a fixed-point operator. We
can strictly describe and infer various properties of rational agents with those
extended notions by usifg0./(450.

1 Introduction

The BDI (Belief-Desire-Intention) model [1] is a model of rational agents based on
Bratman'’s “theory of intention” [2, 3]. There have been many studies and applications
on this model, which have proved its usefulness [4].

In the BDI model, a rational agent has three kinds of mental states, which are belief,
desire and intention, and the agent determines its action to achieve its goal by main-
taining and updating these states of mind. One of the features of the BDI model is that
it has a modal logic system called “BDI logic”. BDI logic explicitly describes those
mental states and their temporal changes, so we can formally prove and discuss rational
agents’ mental states and their behaviors. For example, a blind commitment strategy [5],
well-known one of the commitment maintenance strategies which is stated as ‘once an
agent intends to achiev necessarily in the future, then she maintains that intention
until she believes that she has achieyédcan be written adNTEND(AF ¢) D A
(INTEND(AF ¢) U BEL(¢)). As another example, a property of rational agent that “if
an agent intends to achieyeat the next time point, and believes theandq are mu-
tually excluded forever, then she does not intend to achjeatethat time”, one of the
consistencies of mental states [2], can be shown by prowWifgEND(AX p) A BEL
(AG(p D —~q)) D - INTEND(AXq). This point is considered to be a major advantage
to designing rational agents, and that's why the BDI model has been generally accepted.



However, in the advancement of research of rational agents, various extensions to
BDI logic have been proposed. If there are mismatches between notions appearing in
these extensions and the ones in traditional BDI logic, we may have difficulties in for-
malizing them appropriately. Therefore, one of the advantages of the BDI model that
we can strictly discuss properties about rational agents can be diminished. Examples of
such extensions are, as described in Section 2, “probabilistic state transitions” which
are used in the reinforcement learning task and “cooperative actions” which are used in
multi-agent system. In particular, these notions are considered important for realization
of rational agents in the real world. Based on this standpoint, we propose a logic system
called 764476 (Theory about Observations of Multi-Agents with Tense and Odds)
which introduces probabilistic state transitions and a fixed-point operator by extending
traditional BDI logic.

We have constructed sound and complete deduction systems of traditional BDI logic
using sequence calculi [6-8]. Therefore, we also aim to construct orfetiers{76.

In this paper, we show the soundness of the deduction systénd.éf46, and in
addition, the completeness which is restricted to propositional logic. Our future work
includes studying the completenes$if M 4T G in predicate logic.

With a deduction system, we can formally discuss properties of rational agents syn-
tactically rather than semantically, and automatic proof checking also becomes possi-
ble. We also intend to construct a decision algorithm using the tableau method [9] in
the future, though restricted to propositional logic.

One of the advantages 00.U049 6 is that, using probabilistic state transition op-
erators, we can describe state transitions in MDPs (Markoff decision processes), which
is a basis of the reinforcement learning task. In addition, using a fixed-point operator,
we can finitely describe notions, such as mutual belief and cooperative intentions, in
multi-agent systems, which cannot be described@R.4 [10] without using infinite
conjunctions/disjunctions. Moreover, inferences about these properties using sequent
calculus are possible. These points are discussed in detail in Section 4.

In this paper, we first describe the mismatches between the traditional BDI model
and the above-mentioned new notions in Section 2, and we intréduded 76 in Sec-
tion 3. In Section 4, we show examples of descriptions and prod¥difl. {76 con-
cerning probabilistic state transitions and cooperative actions. In Section 5, we present
discussions and describe our future work, and conclude in Section 6.

2 Divergence from BDI Model

2.1 Treatment of probabilistic state transition

As described in Section 1, one of the notions that is difficult to treat strictly in traditional
BDI logic is the idea of probabilistic state transitions, which is mandatory to incorporate
machine learning techniques into the BDI model.

We propose the integration of a BDI agent and reinforcement learning, in which an
agent combines deliberation and reflexive actions according to the situation [11].

For example, when we are passing a familiar road, we can select the route in re-
sponse to our surroundings without the need for practical reasoning. As another ex-
ample, a soccer player instantaneously performs an appropriate action according to the



skills acquired by intensive training. Our idea is, similar to these situations, to import
reactive action acquired by learning into a BDI agent to enable more human-like behav-
iors.

We attempted, within the BDI model, to describe state transitions used in MDP [12],
which is a basis for the reinforcement learning task [13]. However, MDP is basically
based on probabilistic transitions, and within traditional BDI logic, which does not have
probabilistic transition operators, we can only describe agent movement as “moves one
of the accessible states”.

For instance, if we try to write a situation “if an agent at statexecutes an action
e1, then it transfers to state and receives reward 3 with probability 0.7, or transfers
to statess and receives reward 5 with probability 0.3” in traditional BDI logic, we have
to eliminate the probabilities and only write as “transfers to either one”.

PCTL [14] is known as a logical system that extends CTL to treat a probabilistic
transition. However, since it describes probability per path (a line of time points) as de-
scribed in Section 5.2, describing the probability for each action (event) may be difficult
in this logic.

2.2 Treatment of cooperative action

Another example is the difficulty in the treatment of cooperative actions in multi-agent
environments. Even though this is an important issue, the original BDI logic can treat
only a single agent’s mental state.

There is a logical systemOR.A [10], which is extended to describe the men-
tal states of multiple agents in multi-agent environments. It treats various concepts re-
quired for handling agents’ cooperative actions, such as mutual belief, recognition of
the potential for cooperative action, and generation and execution of joint intension.
However, LCOR A is a complicated logical system with various components, includ-
ing action expressions corresponding to dynamic logic and operators séait &w
judging whether an agent can execute an action. Nevertheless, it is still necessary to
introduce new operators, by using infinite conjunctions/disjunctions of formulas, to de-
scribe cooperative actions,

If a logical system is complicated, it will be intractable and difficult to construct its
deduction system. Then the advantage of formalization in the logic is diminished. In
fact, the deduction system @gfOR.A has not been given.

As an example, for an agent grogito form a joint intention for achieving a mutual
goal () of lifting a 1-ton object, it is necessary that agentg ioan achieve this only
cooperatively, and they mutually believe this fact. To describe this situati6DiR A,
we introduce the formuléx]-Can0 g ¢) using pre-existing operators, which states that
g can first achieve in a single step, as an abbreviation of a formula signifying that “
can execute some actienand¢ is achieved by this action. Alsg, mutually believes
this fact”. Next, a formulgJ-Can g ¢) which states that an agent grogjgan achieve
the goale, is introduced as an abbreviation of the infinite disjuncﬁd{CanO go)V
(3-can’ g (3-Can” g ¢)) Vv (3-Can’ ¢ (3-Can® g (J-Can” g ¢))) V- - -. Subsequently,
the process of forming a joint intention of achievings described using-Can.

However, to be accurate, we have to introddg@an as a new operator rather than
as an abbreviation, because the infinite disjunctive cannot be originally written as a



proper formuld. Moreover, because infinite conjunctions are used in the definition of
mutual belief, this part ofJ-Can cannot be written iCOR A either.

Consequently, we consider treating infinite conjunctions and disjunctions uniformly
by introducing a fixed-point operator to reduce complication of the syntax.

3 Extension of BDI logic

In this section, based on the discussions so far, we propose a modal logic system
JOMATO for easily handling the notions described in SectiorTBM A6 is a
branching-time temporal logic with a fixed-point operator and mental state operators
for each agent in multi-agent environments.

3.1 Formulas

Syntax We give the definition of formulas iFCG. U456 here. Hereinafter, the word
‘formula’ means that offG.U A6 unless expressly stated otherwise. Symbols dike
andy are used as usual variable symbols in first-order predicate logic, and symbols such
asX andY are variable symbols, each of which expresses a formula. We call the latter
‘formula variables®. Typically, they are used with fixed-point operators.

Suppose that we fix a first-order languafea set of formula variable¥, a set of
event constant symbols and a set of agent constant symhdiswhere€ and. A are
finite andV is infinite. Hereafter, we writ¢p | p € R,0 < p < 1} as|0, 1]. Then,

Any atomic formula inC is a formula (in7CM <177 6).

— If ¢, ¢ are formulas, then Vv ¢ and—¢ are also formulas.

— If ¢ is a formula and: is a variable symbol, theviz¢ is also a formula.

— If e € &, nis a positive integer, and far= 1,2, - -, n, ¢; is a formulap; € [0,1]
andr; € {>,>},thenX®(;,p, &1 | -+ | r.p, ¢n) is @ formula. In particular, when
n =1, we writeX; ¢, instead oX“(;.,p, ¢1).

— If ¢ is a formula and. € A, thenBEL" ¢, DESIRE® ¢, INTEND ¢ are formulas.

— If X € V, thenX is a formula.

— If ¢ is a formula,X € V, andX does not occur negatively (i.e. does not occur in

odd number of nesting of") in ¢, thenuX.¢ is a formula. HoweverX may occur

only inside the scope of any modal operaf,(BEL®, DESIRE®, INTEND®); for

exampleu X.p A X is not a formula.

We introducen, D, <, 3 as abbreviations in the usual manner. In additiol, ¢ is an
abbreviation of-uX.—¢[X := —X]. Herep is the so-called least fixed-point operator
[15], andv is the greatest fixed-point operator. We also introduce notainse,

Y In other words, no finite formula iILOR.A can be semantically equivalent t3-Can g ¢),
without introducing a new operator.

2 See [10] for the need of infiniteness.

3 The name ‘formula variables’ may be slightly irrelevant, because they don’t range over formu-
las. However, their main use is to form fixed-points, which can be regarded as new formulas.
In this sense, we call them ‘formula variables’.
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Fig. 1. Intuitive explanation oX® operator

<, 0, X<, ¢ as abbreviations of XS, ¢, =~ X, ¢, (XS, 6) A (= XS, ¢), respectively.

When needed, we eliminate ambiguities using parenthesis. Without parenthesis, op-
erators associate in the following order: unary operators (including fixed-point opera-
tors), A, V, D, <. Moreover,D is right-associative, while other binary operators are
left-associative.

Informal explanation of operators X is an extension of the next-time operafoxX
in CTL with an evente and transition probabilities. For exampk (>3 ¢1 | >.5 ¢2)
intuitively means that if an evenrtoccurs, then at the next time point; holds with
probability of at least 0.3, and aside from that cageholds with probability of at
least 0.5. Note the difference between that formulaXbd ¢; A X< 5 ¢o; the former
ensures that the case in whigh holds and the one in whiah, holds does not overlap,
but the latter does not (the left half of Fig. 1, where at each gtatnd¢, may or may
not hold unless expressly stated).

BEL“ ¢, DESIRE" ¢ andINTEND" ¢ mean that an ageanthas a belief, desire or
intentiong, respectively. For simplicity, we currently do not introduce probabilities into
these mental state operators. However, it is thought to be possible to do so in the same
way as forX® operator. It can be useful for modeling agents, which have functions of
some sort of statistical estimations such as pattern recognition.

Expressiveness compared to traditional BDI logicslt is known that branching-time
temporal logics withAX and the fixed-point operators have strictly stronger expressive
power than CTL* [16,17].

SinceJ06.MATOC has an individual next-time operator for each event, we have to
write A\ AX® ¢ (where, and hereaftehX® ¢ is an abbreviation oK<, ¢) to express
what is equivalent t&\X ¢ in CTL. Formulas using other CTL or CTL* operators can
also be written it7G M <4%76 in a similar manner. Moreover, with event-wise next-time
operators, we can write formulas suchas. (¢ vV ¢ A AX® X), which means that “if
an event continuously occurs, thep holds untily holds” and cannot be handled by
CTL*.

Using the fixed-point operator, we can also handle notions which correspond to the
action expressions iIBOR.A [10]. In LOR A, concatenations, choices, and repetitions
of actions, such as in dynamic logic, can be written as action expressions. For example,
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Fig. 2. Overview of BDI structure

a formula of LORA (Nec a ¢) means “just after executing an action ¢ holds”.
Supposing thaty = ((a1; a2)*; ag), it means “if an actionys is executed soon after
executing an action sequenag, a, for arbitrary times, them holds”. In TGM A0,
the equivalent of this can be written aX.(AX ¢ A AX®* AX®? X)), whereeq, ez, e3
are events correspondingdg, as, asg, respectively.

Mutual mental states [8, 10] can also be handled by the fixed-point operator. When
g C A, we abbreviatd\aeg BEL" ¢ asE-BELY ¢. Then, we abbreviate-BELY v X.
(¢ A E-BELY X) asM-BELY ¢, which means that “a group of agentdas a mutual
belief ¢”. Mutual desires and intentions can be written in the same manner.

3.2 Semantics
BDI structure First we fix the following:

— a set of possible worldg/ (# 0)

— for eachw € W, a set of stateSt,, (# () (may be different in different worlds)

— foreachw € W and each € St,,, aninterpretation (including variable assignment)
iw, Of L. In other words, a domaili and an interpretation of each constant, pred-
icate, function, and variable symbol 6f All components except the interpretation
of predicate symbols must be the same for all states.

— for eacha € A and eacht € |,y Stw, a serial, transitive and Euclidean binary
relationB’, on the se{w | ¢ € St, }, and serial binary relatior®’,, Z! on the same
set.

— for eachw € W and each € &, a serial binary relatioi?, on St,,, and a function
Pe - RS — [0,1] wherezt/e{t,lmit,} Pe(t,t') = 1foranyt € St,.

We call a tuple of the above-mentioned components a BDI-structure. Intuitively, a state
corresponds to a time point in temporal logics, and a possible world is a time tree of
statest RS, ¢ and P (t,¢') = p mean that if an evert occurs at state, then the
next time ist’ with probabilityp. B, D!, andZ}, are accessibility relations on possible
worlds at timet, which represent the belief, desire and intention of agergspectively
(an overview is shown in Fig. 2).

Since eachR?, is defined to be serial, any event can occur at any state. However,
in fact, usually only specific events can occur at a specific state. This property can be
expressed by establishing a so-called dead-gtaae which a specific atomic formula



deadholds, and creating state transitions from any stéabal with any non-executable
event at (in particular, state transition froehby any event goes téitself). For exam-
ple, a property that “if an evemtcan occur, theg holds aftere occurs” can be written
as— AX®dead> AX® ¢.

In this paper, for simplicity, we do not consider the mental state consistencies of the
BDI model [7, 18]. Thus there are no special relationships an8$ingd!, andZ!. A
brief discussion on this issue appears in Section 5.1.

Interpretation of formulas We write {(w,t) | w € W,¢ € St,} asSwt hereafter.
Given a BDI structure M and a functiofy, : V — 25" we define the interpretation

[[¢]]<M,fv> of a formulag as follows (note thaM(M,M C Swi.

— If ¢ is an atomic formulaf¢] ., = {(w,t) | ¢ is true W.rtiiy,  }

= oVl oy = D) ar 5y Y I ar 1)

= [20liar, 1y = SWE\ [S] (01 1,,)

= V2l s 5y = Nueu [@)(ase ) WhereM™ is a BDI structure obtained by re-
placing the interpretation af in M with w.

= XCGupa &1 | | rop ¢7)]]<A17fv> /: {(w, 1) | th(lare are /some mutually disjoint
subsetsTy, -+, T, of {t' | t R, ¢'} st Ty C {t' | (w,t) € [d:i]pr 4} and
Yover, Po(t,t') ripifori=1,.-. n} (note that each,, - - -, r, is > or >)

- [[B.E!_“ Aiar o) = {(Zu,t) | for anyw’ s.t.w B,Z w', (w',t) € [D]ar gy}

— Similar for [DESIRE" ¢] , ., and[INTEND® ¢] , .,

- Xliar gy = (X)) for X eV

Then, a formulap, with (or without) free occurrences of a formula variable can be
regarded as a functiofy, : Swt — Swt which receives an interpretation af as an
argument and returns an interpretatiorpofl herefore, we define that

- [[MX'd)]](JW,fv) is the least fixed-point of .

Here, the least fixed-point is known to exist sinfgein this case is monotonic by defi-
nition [19].

We say thatg holds at a state of a world w when [¢] /., > (w,?). If
[[¢]]<M,fv> = Swtfor any M and fy,, we say that is valid.

3.3 Deduction system

In this section we give a deduction systen?if A 476 using sequent calculus.

We identify a-equivalent formulas. We regard the left-hand side-ef bf a sequent
as a (finite) multi-set of formulas, and likewise for the right-hand side (thus we do not
have the exchange rule). Hereafter, we sometimes enclose a whole sequénttmto
clarify the range of the sequent in the text.

We use a capital Greek letteE( A etc.; including a letter with a hash such.8§
and A’) to denote a multi-set of 0 or more formulas. As an exceptidrpntains only
one or no formula.

The interpretation of a sequef — A] is defined as that of the formuj§ X' >
\/ A. We define thay\ § = trueand\/ ) = false wheretrue is an abbreviation of a
suitable tautology anfalseis an abbreviation ofitrue.
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Fig. 3. Inference rules oG4 476G (excluding a rule described in Section 3.4)

Inference rules We enumerate the inference rules®tf. #4506 in Fig. 3. However,
note that there is an additional rule which is concerned withXh@perator in the
left-hand side of—’ of a sequent. It is not shown in Fig. 3 but described in Section 3.4.

For a multi-set of formulag™ and a unaly operatdk, K (I") stands for a multi-set
of formulas obtained by applying for each element of".

In theVL rule, t is an arbitrary term. In th&R rule,y is a variable symbol which
does not occur freely in the conclusion of the rule.

The Xexol rule means that any subformula of the form shown in the assumption
anywhere in the sequent can be replaced by the formula shown in the conclusion. In
this rule,n > 2, and fori = 1,---,n, ¥ iIs=X1 A -+ A =X A X A =X A
-+ A =X, whereXy, -, X,, are formula variables that does not occur freely in the
conclusion of the rule. This rule is provided so that we can decompose formulas in the
form of X°(- - -) into those in the form oK? , ¢1, by reversely applying it.

The BEL-KD45 rule, same as in [6, 20], is constructed so that the axiom schemas
KD45 for theBEL operator are ensured to be held. THeand iR rules are provided
to enable proofs by loop (see Section 6 for example), such as in [6, 20, 21].

3.4 Additional inference rule for X

In this section, we describe an additional inference rule fortheperator, which is
not included in Fig. 3.

Let I' = {X{ ,, %1, -+, X}, tn}, where eachry,---,r, is> or >, andQ =
{4p1,-+-, 9, }. If @ functionv : 22 — [0,1] satisfies thad - qv(Q) = 1, and
(X ge(rirca,pery v(Q))ripi holds for eachi = 1,---,n, then we callv a prob-
ability distribution function(PrDF) of I". Intuitively, a PrDF determines probabilities
of transitions from a state to next-time states, at each of which a s@bsef holds,
so that for eachy;, the probability that); holds satisfies;p;.

Fora PrDFv of I', we call{@ C Q| v(Q) > 0} a satisfaction request set (SRS) of
I'onv, and write itas reg(I"). Let Z be an SRS of” (on some PrDR). If all elements
of Z are satisfiable, we say thatis satisfiable. In general; is satisfiable iff there is a
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Fig. 4. Example of inference rules aboXt operators

satisfiable SR of I'.

If, for Z, Z' c 29, someQ € Z andZ" C 29 existandZ’ = (Z U Z") \ {Q}
holds, we writeZ = Z’. Let =~ be a non-reflective transitive closuresef Note that if
7 == 7' andZ is satisfiable, the’ is also satisfiable. I is an SRS of", and there
is no SRSZ’ of I" which satisfiesZ =~ Z’, we say thatZ is an essential SRS (eSRS).
Sinceq is finite, there is no infinite sequencq, Z,,--- st.Z; = Zs = ---. Asa
result, there exists a satisfiable SRS oiff there exists a satisfiable eSRS of

LetZy ={Q11, ", Qumi }» - Zk = {Qk,1, -, Qk,m, } be the enumeration of
all eSRSs off". Then for any sequence of positive integers - -, jx, wherel < j; <
my,---,1 < jr < my, the following is an inference rule GF6.UATO.

Qijy = - Qi —
I —

For example, Letl” = {X5 391, X504 %2, X563} andQ = {1, ¥z, 15}
Then a functionv : 22 — [0, 1], wherev({s1,12}) = 0.4, v({¢3}) = 0.6, and
v(Q) = 0 for all other@ C Q is a PrDF ofl", and req(I") = {{1,¢2},{vs}} =
Zy is an SRS ofl". Z; is also an eSRS. A functior’, wherev’ ({¢1,%2}) = 0.3,
o' ({t2}) = 0.1, v/ ({92, 93}) = 0.6, andv’(Q) = 0 for all other@ C 9 is also a
PrDF of I, but req, (I") = Zj is not an eSRS sincg] >~ Z;.

In this exampleZ; andZs = {{v0, ¥3},{w1}} andZs = {{¢s3, ¢}, {12}} (see
the right half of Fig. 1) are all eSRSs. In the tableau method, to show/ fhat| is
provable, we have to show thatis unsatisfiable. It is equivalent to show that there is
no satisfiable eSRS df, and also equivalent to show that any eSR3 dfas at least
one unsatisfiable element. THeKD rule is constructed in this way.

Therefore, in this example, we havé=8 |Z;| - | Z2| - | Z3|) rules, and one of them

is the following.
1,02 = o, 3 = P2 —
XeZ,?, wla XEZ,4 ¢27 Xez,6 ¢3 -

However, the leftmost two sequents of the assumption of this rule are redundant. After
removing similar redundancies from other rules, we need only 4 rules, as shown in Fig.
4, and the rest 4 can be omitted since the assumption of each of those includes another
rule. (In addition, rules in Fig. 4 except the upper-left-most one can be aggregated into

a single rulexeji;;, whered < p <1.)
2P

X-KD

Definition of provability A sequentS is said to be derivable from a sétof sequents
if one of the following conditions holds.



1. SelL
2. There is an inference rulg% (n > 0) and all of Sy, - - -, .S, are derivable
from L

We say that a sequesstis provable if one of the following conditions is satisfied.
Here¢™(X) is defined ag’(X) = X and¢™(X) = ¢[X = ¢"~1(X)].

1. Sis derivable from).
2. 5=[Y, uX.¢ — Al whereX does not occur freely iV, A, and there is a positive
integern s.t.[ X, ¢™(X) — A] is derivable from{[ ¥, X — A]}.

A formula ¢ is defined to be provable jf~ ¢] is provable.

Soundness and completenesdn this section, we first show the soundness of
J0M4%6, and then we show a proof sketch to show the completene36.6f4JT6
restricted to propositional logic. A study of the completene$s®i 476 on predicate
logic is for future work.

To show the soundness, it is enough to show that every inference rule preserves the
validity of sequents, and thatin the item 2. of the provability definition is valid. The
former is easy; therefore, we show the latter. For any ordinahd the functionf, in
Section 3.2, we define a functigif : Swt— Swtas follows.

fo@)y=z  f§T(z) = fs(f3 ()

fi(a) = U {5 (x)} whenX is a limit ordinal
a<

Then, if (X, " (X) — 4] is derivable from{[ X, X — A]}, for any BDI structure and
any infinite ordinaky, [~ — AJ holds at any state iy’ (). Also, an infinite ordinab
exists s.tf3 (0) = [uX.¢]. Thus[¥, pX.¢ — Al is valid.

Next we show the proof sketch of the completeness restricted to propositional logic.
Without loss of generality, we can assume that any subformulas of thearm,, ¢1 |
| ppn ®n), Wheren > 2 do not occur anywhere in sequents, since we can omit them
by reversely applying th&e, rule (as described in Section 3.3).

Let Npsbe a set of non-provable sequents that have only atomic formulas (i.e.
atomic propositions) and formulas in the form X.¢, X7, ¢, BEL" ¢, DESIRE"
¢, andINTEND” ¢ in the both sides of-+’, but do not have formulas in the form of
X, ¢ to the right of ‘=’ For S € Nps we definedec.(S) as a non-provable sequent
obtained fromS by reversely applying:L/R, VL/R, -L/R, X>R, andX-R rules as
many times as possible. If there are more than one such sequents, choose an arbitrary
one adecp(S). Note that we cannot applyL/R infinite times because in a formula
1X.¢ we do not have any outside the scope of modal operators.

Regarding\Npsas a set of states, we construct a ‘flat’ version of BDI structure (i.e.
we do not take the set of world¥” into consideration, and all accessibility relations
are binary relations oiNpg by the following procedure, which is based on Wang'’s
algorithm [20, 22] for propositional modal logics.

First, we define binary relatiorts,, D,, andZ, on Npsfor eacha € A as follows.



- S D, S iff we can obtainS’ from decu(.S) by applying the following procedure:
1. First, reversely apply Weak ec(.S) to leave only all formulas in the form
of DESIRE” ¢ to the left of ‘~’, and only one (iff there is any) of them in that
form to the right of .
2. Then, reversely applRESIRE-KD once to remove outermoBESIRE".
3. Last, reversely apply rulesL/R, —-L/R, X> R, X5 R as many times as possible.

— Similar forZ,.

— To define,, we first define3/, in a similar manner to that fob, andZ,. Let
BEL“*(S) be the set of formulas of the forBEL" ¢ to the left of ‘-’ of se-
quentdecy(S), andBEL®™ (S) be a similar one for the right of>’. Assume that
S =Sy B, S, B, Sy, B, ---. ThenBEL**(Sy),BEL*"(S)),---, andBEL*~
(So),BEL“™(S1), - - - are both monotonically nondecreasing. Therefore, due to the
finiteness of formulas and sequents, there is sSmthat satisfies that i), B.*

S’ (hereB’* is the transitive closure df’,), thenBEL“"(S),) = BEL"*(S’) and
BEL“™ (Sk) = BEL" (5’). We define thas B, S’, S’ B, S” iff Sy B S’ and
Sk BlF S".

Next we define binary relationg® on Npsand a functior?® : R — [0, 1] for each
e € & as follows. Let a sequertt be given.

1. First, we reversely apply Weak tecp(.S) to leave only all formulas in the form
of X7, ¢ in the both sides of--".

2. Then, reversely appl¥>R andX- R as many times as possible to move all formu-
las in the form ofX7, ¢ in the right-hand side of*>’ toward the left of ‘—’. At this
moment the sequent is in the form[éf —], wherel"is {X} , ¢1,---, X , n}.

3. Since[I" —] is not provable, by the construction ¥fKD rule, there is a PrDF
v of I and an eSRSQ,---,Q,,} of I' on v, where none of sequen{§®; —
],---,[Qm —] are provable.

4. Now, we putS R® S andP¢(S,S’) = v(Q);) iff S’ can be obtained from some
[Q; —] above, by reversely applying ruled /R, —-L/R, X>R, andX-R as many
times as possible.

Subsequently, for each staten Nps we choose an interpretatienof atomic proposi-
tions s.ti.(p) is true iff p occurs to the left of-’ of the sequentlec . (¢). In addition,
we also choose a functiofy, : V — 25Ms.t. f1,(X) > tiff X occurs to the left of -’
of the sequendec(t).

Now we have a ‘flat’ BDI structure. In additiol3, satisfies KD45, and all other
accessibility relations satisfy KD. We can easily convert it into a normal BDI structure
M.

Then we show that for each stata M, formulas to the left of -’ of the sequent
t are true at, and ones to the right are falsetaiVe do so only for the formulas of the
form uX.¢ at both sides of--'.

Let I be a set of states (sequents)lify which hasu X.¢ to the right of *'. By
the construction method @f, for any ordinaky, we can show thatf (0))¢ > F' (here
A€ denotes a complement set4f. ThereforeuX.¢ is false at any state if'.

Let S be a state (sequent) i, which hasuX.¢ to the left of —’, and S(n) be a
state obtained fron§' by replacinguX.¢ with ¢™(X). By the construction method of



M and the finiteness of formulas and sequents, there is a positive integefor each
sequence of state) 2 S; 2 ---, whereSy = S(n) andl = {J, (B, UD, UZ,) U
U.. R%,» one of the followings holds

i. X does not occur in soms,.
ii. There are somg, ¢ s.t.S, = S, andX occurs inSy,.

If all such sequences satisfy ii., théhis provable using the item 2. of the provability
definition, and contradicts the assumption. Therefore, there is a sequence that satisfies i.
above. By the construction @f/, there is also a sequensg 2l 57 A - - -, whereS|, =
S and which satisfies i., and again by the constructionofuX.¢ is true atS.

A decision algorithm for proposition&@lC.#(s4°7G can be directly derived from this
proof of the completeness (if an algorithm to calculate eSRS is provided). We plan to
mention this in the future.

4 Examples of description and proof

4.1 Modeling probabilistic state transitions

We can write the situation in the example of Section 2.atas;) D X' (> 7 at(s2) A
reward3) | >sat(s3) A reward5)) using the probabilistic transition operator of
FOMATO.

Let ¢ be this formula. We can confirm that if we aresaf then after executing;,
we can surely receive reward 3 or more by prowing at(s;) > AX®! Jz(reward(z) A
x > 3), provided that we can proveé > 3 and5 > 3. The proof is shown in Fig.

5, where we abbreviatat(s,), reward(3), at(ss), reward5), andrewardz) A z > 3

aspi, q1, p2, g2, andy, respectively. AnX-KD rule applied between the 3rd column
from the bottom and a column right above it is derived from the fact that all eSRSs of
(X276, XS 56, X & are{{&, &}, {G 1 {{&. &1 {61 and{{&, &1 {61}
(wheregy, &, &3 are arbitrary formulas).

Machine learning cannot be performed only by describing in logic, and requires
external tools to do so. However, after learning, we can describe the result as a property
of an agent like the one above. Also, there is a possibility to implement a learning
system within a frame of logic. In this sense, treating such properties in logic has a
positive significance.

4.2 Modeling coordinated actions

J-Can described in Section 2.2 is necessary to describe coordinated actions. However,
in LORA, it can only be written using infinite disjunctions and conjunctions. It is
expressible iW0M 477G using the fixed-point operator.

To describe the first half of the description @tCan® g ¢) in Section 2.2 (i.e. §

4 In other words, the process of reversely applying rules continuously will eventually stop by
entering a loop. That is why our system can have a decision algorithm, despite the lack of
subformula property.
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— ¢ Aat(sy) D AXT Jxyp
Fig. 5. Example of proof (1)

can execute some actienand¢ is achieved by this action”), we introduce a predicate
Agt s.t. Agt(e, a) holds iff an agent: can execute an eveat We use a list structure in
first-order language to represent a group of agents, and introduce the ‘member’ predi-
cate using its general definition in Prolog, i.e. a non-logical axiorfmembe(z, cons
(z,nil)) A VyVz(membefz, ) D membe(z,congy, z))))°. Then, we can represent

the above-mentioned part a(.(¢ V V¢ ,c 4 (AQt(e, a) A membefa, g) A AX® X)).

(Note: LOR A introduces equivalents fégt and ‘member’ as primordial components

of formulas, and enables the applyingwfor agents and actions. These reduce the
length of formulas, but complicates syntax and semantics.)

Let ¢ be this formula, and abbreviateX.(§ A A, 4 (membefa, g) D BEL® X))
asE-Know? ¢, which states that¢*holds and an agent groupmutually believes it”.
ThenE-Know? ¢ is equivalent tqJ-Can® g ¢). Further, we can represefdCan g ¢)
by uX.((3-Can” g ¢) v (J-Can’ ¢ X)). By proceeding in this way, we can construct
further descriptions about coordinations of agents likE@R.A.

To prove various properties of coordinations is also possible. Fig. 6 is a proof of a
property(J—Can0 g o) D E—Knowg(J—Can0 g ¢), whose equivalent is represented in
LORA (we assumed in Section 3.1 bday, - - -, a, }). Using the above-mentioned
this formula can be rewritten &Know? ¢ > E-Know? E-Know? ), so we give the
proof of this formula. In that figure, we abbreviate, . ,(membefa,g) O BEL"¢)
asB, £. Hence E-Know? ¢ is an abbreviation of X .(—¢ V - B, =X ). Furthermore
we abbreviatg.X.(-¢ V - B, ~X) asnEk? . As a resultE-Know? ¢ is syntactically
equivalent to- nEk? £. In Fig. 6, the topmost column of the rightward proof figure is
derived from the leftward proof figure using the item 2. of the provability definition.

5 Discussions

We have given an extended BDI logic to handle notions required for formalizing realis-
tic rational agents. However, there are more issues to consider, though we do not treat
them in this paper. In this section we discuss some of them.

5.1 Treatment of mental state consistencies

As we described in Section 3.2, we have omitted discussions about mental state consis-
tencies for simplicity. However, mental state consistencies are significant in Bratman’s

5 In fact, the proof in Fig. 6 does not depend on this definition.



X — nEk? ¢ X — nEK?

—|nEkg1/1—>ﬂX —\nEkg’l/)—>—\X

BEL" —nEkY ¢y — BEL™ =X BEL“" = nEkY ¢y — BEL"" =X

- (n branches in total)- -
Bg - nEkgw — Bg =X

: = By=X — —p V- B, ~nEKY ¢ nEk? E-Know? ¢ — nEKY 1)
E-Know? ¢ — nEkY ¢ - By =X — nEK? :
— E-Know? YV Bg —X — nEKY Wb — E-Know? () E-Know? E-Know? ¢

Fig. 6. Example of proof (2)

intention principle and need to be handled to describe rational agents. For example, the
property that “an agent will not form an intention if she cannot believe the possibility
of achieving it” is said to be one of the required properties of rational agents. In tradi-
tional BDI logic, as in [7, 18], this is written aNTEND(EX ¢) > BEL(EX ¢), and
it presents the semantics that make it valid and the deduction system that can prove it.
Currently76.4 457G cannot treat such a property. This is for future work.

When considering this, it is also interesting to consider consistency between proba-
bilistic mental state operators mentioned in Section 3.1. For example, when the possi-
bility of achievement of is believed with a probability 0.9, can we intes@

5.2 Treatment of probabilistic transitions

The temporal operator ifTGUATC is an extension of the next-time operator in CTL
with a probability. This is because we introduced this operator so that we can construct
a proof system base on the tableau method. However, a disadvantage of this is that the
description with the probability is restricted to the transition between current time and
the next time.

In PCTL [14], we can describe the probability on the time sequence (path). In
other words, the probability is given on path formulas. For example, a property “we
can achievep not less than the probability of 0.9 in the future” can be written as
[truelf ¢]>o.9. CurrentlyFG.M«4TC cannot describe such a property.

However, as described in Section 2.1, it is difficult to describe event-wise probabil-
ities in PCTL, unlike inTG.#<4°7G. Moreover, it is believed to be difficult for PCTL
to create the proof system using the tableau method due to an excessive flexibility of
probability descriptions in PCTL. Even for qualitative PCTL, in which probabilistic
descriptions are restricted to 0 and 1, no deduction system is yet known [23]. To take
the balance of construction of the proof system and flexibility of representation is an
important issue.

5.3 Treatment of stability of mental states

We believe that there are more issues to be considered on BDI logic though we did not
treat them in this paper. For example, mental states, such as belief, should generally be



kept by default. However, there is no such concept in BDI logic in nature. The mental
states in BDI logic are merely modal operators, and represented by accessibility rela-
tions on possible worlds, which vary at different times. Thus, there is no logical relation
between the current belief and the one in the next time. If we want to keep the belief
to some extent, we must explicitly introduce a non-logical axiom sueh asA(BEL

(¢) U &) (believesy until £ holds).

In the standard implementation of BDI agents, mental states, such as belief, are
restricted to first-order formulas, and an agent adds or deletes its mental states in its
database by an event suchagigi-belief anddel-belief. The addition and deletion
of her mental states occurs procedurally, so the consistency between it and the logic is
not guaranteed. There are some trials, such as AgentSpeak(L) [24], for bridging this
gap by offering a proof theory about the properties of such procedures. However, they
do not dissolve the un-naturalness of the logic that the mental states are not maintained
by default, nor eliminate the fact that mental states are restricted to first-order formulas
in the implementations.

Mental states are not always expected to be kept; for example, if there is a belief
BEL(AX ¢) (believes that & in next time”), it would be natural that we halEL (¢)
the next time. [25] is one of such studies, though it is based on non-branching temporal
logic and lack of descriptive power is anticipated. It will be interesting to consider how
we treat such things in modal logics.

Some studies treat the updating of mental states as an update of the model itself
instead of time transition. Though such a method is difficult to apply to MDP because
time path is restricted to be unique, it may be also a possibility to handle stability of
mental states naturally.

6 Conclusion

In this paper, we proposéi. it 496, an extended BDI logic with probabilistic transi-
tions and a fixed-point operator, to enable formal descriptions and discussions on ratio-
nal agents with notions such as probabilistic state transitions in reinforcement learning
and cooperative actions in multi-agent environments. We also showed some examples
of descriptions and proofs associated with these notions. Our future work includes a
study of the completeness G456 on predicate logic, construction of a proof al-
gorithm in propositional logic and to introduce some of the notions described in Section
5, especially the consistency of mental states.

We expectiOCM 4TG0 to be a productive tool for modeling, designing and imple-
menting rational agents.
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