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Abstract. One of the advantages of the BDI (Belief-Desire-Intention) model is
that we can formally discuss and prove properties about the mental states (beliefs,
desires and intentions) and behaviors of rational agents using a modal logic called
BDI logic. However, various extensions, such as probabilistic state transitions in
reinforcement learning and cooperative acts in multi-agent environments, have
been attempted in the BDI model. Since those notions are difficult to treat pre-
cisely in traditional BDI logic, the advantage of formalization in BDI logic is di-
minished. In this paper, we propose an extension of BDI logic, calledTOMATO,
which introduces probabilistic state transitions and a fixed-point operator. We
can strictly describe and infer various properties of rational agents with those
extended notions by usingTOMATO.

1 Introduction

The BDI (Belief-Desire-Intention) model [1] is a model of rational agents based on
Bratman’s “theory of intention” [2, 3]. There have been many studies and applications
on this model, which have proved its usefulness [4].

In the BDI model, a rational agent has three kinds of mental states, which are belief,
desire and intention, and the agent determines its action to achieve its goal by main-
taining and updating these states of mind. One of the features of the BDI model is that
it has a modal logic system called “BDI logic”. BDI logic explicitly describes those
mental states and their temporal changes, so we can formally prove and discuss rational
agents’ mental states and their behaviors. For example, a blind commitment strategy [5],
well-known one of the commitment maintenance strategies which is stated as ‘once an
agent intends to achieveφ necessarily in the future, then she maintains that intention
until she believes that she has achievedφ’, can be written asINTEND(AFφ) ⊃ A
(INTEND(AFφ) U BEL(φ)). As another example, a property of rational agent that “if
an agent intends to achievep at the next time point, and believes thatp andq are mu-
tually excluded forever, then she does not intend to achieveq at that time”, one of the
consistencies of mental states [2], can be shown by provingINTEND(AX p) ∧ BEL
(AG(p ⊃ ¬q)) ⊃ ¬ INTEND(AX q). This point is considered to be a major advantage
to designing rational agents, and that’s why the BDI model has been generally accepted.



However, in the advancement of research of rational agents, various extensions to
BDI logic have been proposed. If there are mismatches between notions appearing in
these extensions and the ones in traditional BDI logic, we may have difficulties in for-
malizing them appropriately. Therefore, one of the advantages of the BDI model that
we can strictly discuss properties about rational agents can be diminished. Examples of
such extensions are, as described in Section 2, “probabilistic state transitions” which
are used in the reinforcement learning task and “cooperative actions” which are used in
multi-agent system. In particular, these notions are considered important for realization
of rational agents in the real world. Based on this standpoint, we propose a logic system
calledTOMATO(Theory about Observations of Multi-Agents with Tense and Odds)
which introduces probabilistic state transitions and a fixed-point operator by extending
traditional BDI logic.

We have constructed sound and complete deduction systems of traditional BDI logic
using sequence calculi [6–8]. Therefore, we also aim to construct one forTOMATO.
In this paper, we show the soundness of the deduction system ofTOMATO, and in
addition, the completeness which is restricted to propositional logic. Our future work
includes studying the completeness ofTOMATOin predicate logic.

With a deduction system, we can formally discuss properties of rational agents syn-
tactically rather than semantically, and automatic proof checking also becomes possi-
ble. We also intend to construct a decision algorithm using the tableau method [9] in
the future, though restricted to propositional logic.

One of the advantages ofTOMATOis that, using probabilistic state transition op-
erators, we can describe state transitions in MDPs (Markoff decision processes), which
is a basis of the reinforcement learning task. In addition, using a fixed-point operator,
we can finitely describe notions, such as mutual belief and cooperative intentions, in
multi-agent systems, which cannot be described inLORA [10] without using infinite
conjunctions/disjunctions. Moreover, inferences about these properties using sequent
calculus are possible. These points are discussed in detail in Section 4.

In this paper, we first describe the mismatches between the traditional BDI model
and the above-mentioned new notions in Section 2, and we introduceTOMATOin Sec-
tion 3. In Section 4, we show examples of descriptions and proofs inTOMATOcon-
cerning probabilistic state transitions and cooperative actions. In Section 5, we present
discussions and describe our future work, and conclude in Section 6.

2 Divergence from BDI Model

2.1 Treatment of probabilistic state transition

As described in Section 1, one of the notions that is difficult to treat strictly in traditional
BDI logic is the idea of probabilistic state transitions, which is mandatory to incorporate
machine learning techniques into the BDI model.

We propose the integration of a BDI agent and reinforcement learning, in which an
agent combines deliberation and reflexive actions according to the situation [11].

For example, when we are passing a familiar road, we can select the route in re-
sponse to our surroundings without the need for practical reasoning. As another ex-
ample, a soccer player instantaneously performs an appropriate action according to the



skills acquired by intensive training. Our idea is, similar to these situations, to import
reactive action acquired by learning into a BDI agent to enable more human-like behav-
iors.

We attempted, within the BDI model, to describe state transitions used in MDP [12],
which is a basis for the reinforcement learning task [13]. However, MDP is basically
based on probabilistic transitions, and within traditional BDI logic, which does not have
probabilistic transition operators, we can only describe agent movement as “moves one
of the accessible states”.

For instance, if we try to write a situation “if an agent at states1 executes an action
e1, then it transfers to states2 and receives reward 3 with probability 0.7, or transfers
to states3 and receives reward 5 with probability 0.3” in traditional BDI logic, we have
to eliminate the probabilities and only write as “transfers to either one”.

PCTL [14] is known as a logical system that extends CTL to treat a probabilistic
transition. However, since it describes probability per path (a line of time points) as de-
scribed in Section 5.2, describing the probability for each action (event) may be difficult
in this logic.

2.2 Treatment of cooperative action

Another example is the difficulty in the treatment of cooperative actions in multi-agent
environments. Even though this is an important issue, the original BDI logic can treat
only a single agent’s mental state.

There is a logical systemLORA [10], which is extended to describe the men-
tal states of multiple agents in multi-agent environments. It treats various concepts re-
quired for handling agents’ cooperative actions, such as mutual belief, recognition of
the potential for cooperative action, and generation and execution of joint intension.
However,LORA is a complicated logical system with various components, includ-
ing action expressions corresponding to dynamic logic and operators such asAgt for
judging whether an agent can execute an action. Nevertheless, it is still necessary to
introduce new operators, by using infinite conjunctions/disjunctions of formulas, to de-
scribe cooperative actions,

If a logical system is complicated, it will be intractable and difficult to construct its
deduction system. Then the advantage of formalization in the logic is diminished. In
fact, the deduction system ofLORA has not been given.

As an example, for an agent groupg, to form a joint intention for achieving a mutual
goal (φ) of lifting a 1-ton object, it is necessary that agents ing can achieve this only
cooperatively, and they mutually believe this fact. To describe this situation inLORA,
we introduce the formula(J-Can0 g φ) using pre-existing operators, which states that
g can first achieveφ in a single step, as an abbreviation of a formula signifying that “g
can execute some actionα andφ is achieved by this action. Also,g mutually believes
this fact”. Next, a formula(J-Can g φ) which states that an agent groupg can achieve
the goalφ, is introduced as an abbreviation of the infinite disjunction(J-Can0 g φ) ∨
(J-Can0 g (J-Can0 g φ))∨(J-Can0 g (J-Can0 g (J-Can0 g φ)))∨· · · . Subsequently,
the process of forming a joint intention of achievingφ is described usingJ-Can.

However, to be accurate, we have to introduceJ-Can as a new operator rather than
as an abbreviation, because the infinite disjunctive cannot be originally written as a



proper formula1. Moreover, because infinite conjunctions are used in the definition of
mutual belief2, this part ofJ-Can cannot be written inLORA either.

Consequently, we consider treating infinite conjunctions and disjunctions uniformly
by introducing a fixed-point operator to reduce complication of the syntax.

3 Extension of BDI logic

In this section, based on the discussions so far, we propose a modal logic system
TOMATO for easily handling the notions described in Section 2.TOMATO is a
branching-time temporal logic with a fixed-point operator and mental state operators
for each agent in multi-agent environments.

3.1 Formulas

Syntax We give the definition of formulas inTOMATOhere. Hereinafter, the word
‘formula’ means that ofTOMATOunless expressly stated otherwise. Symbols likex
andy are used as usual variable symbols in first-order predicate logic, and symbols such
asX andY are variable symbols, each of which expresses a formula. We call the latter
‘formula variables’3. Typically, they are used with fixed-point operators.

Suppose that we fix a first-order languageL, a set of formula variablesV, a set of
event constant symbolsE , and a set of agent constant symbolsA, whereE andA are
finite andV is infinite. Hereafter, we write{p | p ∈ R, 0 ≤ p ≤ 1} as[0, 1]. Then,

– Any atomic formula inL is a formula (inTOMATO).
– If φ, ψ are formulas, thenφ ∨ ψ and¬φ are also formulas.
– If φ is a formula andx is a variable symbol, then∀xφ is also a formula.
– If e ∈ E , n is a positive integer, and fori = 1, 2, · · · , n, φi is a formula,pi ∈ [0, 1]

andri ∈ {≥, >}, thenXe(r1p1 φ1 | · · · | rnpn φn) is a formula. In particular, when
n = 1, we writeXer1p1 φ1 instead ofXe(r1p1 φ1).

– If φ is a formula anda ∈ A, thenBELa φ, DESIREa φ, INTENDa φ are formulas.
– If X ∈ V, thenX is a formula.
– If φ is a formula,X ∈ V, andX does not occur negatively (i.e. does not occur in

odd number of nesting of ‘¬’) in φ, thenµX.φ is a formula. However,X may occur
only inside the scope of any modal operator (Xe, BELa, DESIREa, INTENDa); for
example,µX.p ∧X is not a formula.

We introduce∧, ⊃, ⇔, ∃ as abbreviations in the usual manner. In addition,νX.φ is an
abbreviation of¬µX.¬φ[X := ¬X]. Hereµ is the so-called least fixed-point operator
[15], andν is the greatest fixed-point operator. We also introduce notationsXe<p φ,

1 In other words, no finite formula inLORA can be semantically equivalent to(J-Can g φ),
without introducing a new operator.

2 See [10] for the need of infiniteness.
3 The name ‘formula variables’ may be slightly irrelevant, because they don’t range over formu-

las. However, their main use is to form fixed-points, which can be regarded as new formulas.
In this sense, we call them ‘formula variables’.
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Fig. 1. Intuitive explanation ofXe operator

Xe≤p φ, Xe=p φ as abbreviations of¬Xe≥p φ,¬Xe>p φ, (Xe≥p φ)∧(¬Xe>p φ), respectively.
When needed, we eliminate ambiguities using parenthesis. Without parenthesis, op-

erators associate in the following order: unary operators (including fixed-point opera-
tors),∧, ∨, ⊃, ⇔. Moreover,⊃ is right-associative, while other binary operators are
left-associative.

Informal explanation of operators Xe is an extension of the next-time operatorAX
in CTL with an evente and transition probabilities. For example,Xe(≥.3 φ1 | ≥.5 φ2)
intuitively means that if an evente occurs, then at the next time point,φ1 holds with
probability of at least 0.3, and aside from that case,φ2 holds with probability of at
least 0.5. Note the difference between that formula andXe≥.3 φ1 ∧ Xe≥.5 φ2; the former
ensures that the case in whichφ1 holds and the one in whichφ2 holds does not overlap,
but the latter does not (the left half of Fig. 1, where at each stateφ1 andφ2 may or may
not hold unless expressly stated).

BELa φ, DESIREa φ andINTENDa φ mean that an agenta has a belief, desire or
intentionφ, respectively. For simplicity, we currently do not introduce probabilities into
these mental state operators. However, it is thought to be possible to do so in the same
way as forXe operator. It can be useful for modeling agents, which have functions of
some sort of statistical estimations such as pattern recognition.

Expressiveness compared to traditional BDI logicsIt is known that branching-time
temporal logics withAX and the fixed-point operators have strictly stronger expressive
power than CTL* [16,17].

SinceTOMATOhas an individual next-time operator for each event, we have to
write

∧
e∈E AXe φ (where, and hereafter,AXe φ is an abbreviation ofXe≥1 φ) to express

what is equivalent toAXφ in CTL. Formulas using other CTL or CTL* operators can
also be written inTOMATOin a similar manner. Moreover, with event-wise next-time
operators, we can write formulas such asµX.(ψ ∨ φ ∧ AXeX), which means that “if
an evente continuously occurs, thenφ holds untilψ holds” and cannot be handled by
CTL*.

Using the fixed-point operator, we can also handle notions which correspond to the
action expressions inLORA [10]. In LORA, concatenations, choices, and repetitions
of actions, such as in dynamic logic, can be written as action expressions. For example,
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Fig. 2.Overview of BDI structure

a formula ofLORA (Nec α φ) means “just after executing an actionα, φ holds”.
Supposing thatα = ((α1;α2)∗;α3), it means “if an actionα3 is executed soon after
executing an action sequenceα1, α2 for arbitrary times, thenφ holds”. InTOMATO,
the equivalent of this can be written asνX.(AXe3 φ ∧ AXe1 AXe2 X), wheree1, e2, e3
are events corresponding toα1, α2, α3, respectively.

Mutual mental states [8, 10] can also be handled by the fixed-point operator. When
g ⊂ A, we abbreviate

∧
a∈g BELa φ asE-BELg φ. Then, we abbreviateE-BELg νX.

(φ ∧ E-BELgX) asM-BELg φ, which means that “a group of agentsg has a mutual
beliefφ”. Mutual desires and intentions can be written in the same manner.

3.2 Semantics

BDI structure First we fix the following:

– a set of possible worldsW ( 6= ∅)
– for eachw ∈W , a set of statesStw( 6= ∅) (may be different in different worlds)
– for eachw ∈W and eacht ∈ Stw, an interpretation (including variable assignment)
iw,t of L. In other words, a domainU and an interpretation of each constant, pred-
icate, function, and variable symbol ofL. All components except the interpretation
of predicate symbols must be the same for all states.

– for eacha ∈ A and eacht ∈
∪
w∈W Stw, a serial, transitive and Euclidean binary

relationBta on the set{w | t ∈ Stw}, and serial binary relationsDt
a, Ita on the same

set.
– for eachw ∈W and eache ∈ E , a serial binary relationRew onStw, and a function
Pew : Rew → [0, 1] where

∑
t′∈{t′|tRe

wt
′} Pew(t, t′) = 1 for anyt ∈ Stw.

We call a tuple of the above-mentioned components a BDI-structure. Intuitively, a state
corresponds to a time point in temporal logics, and a possible world is a time tree of
states.t Rew t′ andPew(t, t′) = p mean that if an evente occurs at statet, then the
next time ist′ with probabilityp. Bta, Dt

a, andIta are accessibility relations on possible
worlds at timet, which represent the belief, desire and intention of agenta, respectively
(an overview is shown in Fig. 2).

Since eachRew is defined to be serial, any event can occur at any state. However,
in fact, usually only specific events can occur at a specific state. This property can be
expressed by establishing a so-called dead-stated, at which a specific atomic formula



deadholds, and creating state transitions from any statet to d with any non-executable
event att (in particular, state transition fromd by any event goes tod itself). For exam-
ple, a property that “if an evente can occur, thenφ holds aftere occurs” can be written
as¬AXe dead⊃ AXe φ.

In this paper, for simplicity, we do not consider the mental state consistencies of the
BDI model [7, 18]. Thus there are no special relationships amongBta, Dt

a andIta. A
brief discussion on this issue appears in Section 5.1.

Interpretation of formulas We write {(w, t) | w ∈ W, t ∈ Stw} asSwt hereafter.
Given a BDI structure M and a functionfV : V → 2Swt, we define the interpretation
[[φ]]〈M,fV〉 of a formulaφ as follows (note that[[φ]]〈M,fV〉 ⊂ Swt).

– If φ is an atomic formula,[[φ]]〈M,fV〉 = {(w, t) | φ is true w.r.t.iw,t}
– [[φ ∨ ψ]]〈M,fV〉 = [[φ]]〈M,fV〉 ∪ [[ψ]]〈M,fV〉
– [[¬φ]]〈M,fV〉 = Swt\ [[φ]]〈M,fV〉
– [[∀xφ]]〈M,fV〉 =

∩
u∈U [[φ]]〈Mu,fV〉 whereMu is a BDI structure obtained by re-

placing the interpretation ofx in M with u.
– [[Xe(r1p1 φ1 | · · · | rnpn φn)]]〈M,fV〉 = {(w, t) | there are some mutually disjoint

subsetsT1, · · · , Tn of {t′ | t Rew t′} s.t. Ti ⊂ {t′ | (w, t′) ∈ [[φi]]〈M,fV〉} and∑
t′∈Ti

Pew(t, t′) ri pi for i = 1, · · · , n} (note that eachr1, · · · , rn is≥ or>)
– [[BELa φ]]〈M,fV〉 = {(w, t) | for anyw′ s.t.w Bta w′, (w′, t) ∈ [[φ]]〈M,fV〉}
– Similar for [[DESIREa φ]]〈M,fV〉 and[[INTENDa φ]]〈M,fV〉
– [[X]]〈M,fV〉 = fV(X) for X ∈ V

Then, a formulaφ, with (or without) free occurrences of a formula variableX, can be
regarded as a functionfφ : Swt → Swt, which receives an interpretation ofX as an
argument and returns an interpretation ofφ. Therefore, we define that

– [[µX.φ]]〈M,fV〉 is the least fixed-point offφ.

Here, the least fixed-point is known to exist sincefφ in this case is monotonic by defi-
nition [19].

We say thatφ holds at a statet of a world w when [[φ]]〈M,fV〉 3 (w, t). If
[[φ]]〈M,fV〉 = Swt for anyM andfV , we say thatφ is valid.

3.3 Deduction system

In this section we give a deduction system ofTOMATOusing sequent calculus.
We identifyα-equivalent formulas. We regard the left-hand side of ‘→’ of a sequent

as a (finite) multi-set of formulas, and likewise for the right-hand side (thus we do not
have the exchange rule). Hereafter, we sometimes enclose a whole sequent into[ ] to
clarify the range of the sequent in the text.

We use a capital Greek letter (Σ, ∆ etc.; including a letter with a hash such asΣ′,
and∆′) to denote a multi-set of 0 or more formulas. As an exception,Θ contains only
one or no formula.

The interpretation of a sequent[Σ → ∆] is defined as that of the formula
∧
Σ ⊃∨

∆. We define that
∧

∅ = true and
∨
∅ = false, wheretrue is an abbreviation of a

suitable tautology andfalseis an abbreviation of¬true.
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INTEND-KD
· · · Xer1 p1(φ1 ∧ ψ1) ∧ · · · ∧ Xern pn

(φn ∧ ψn) · · ·
· · · Xe(r1p1 φ1 | · · · | rnpn φn) · · ·

Xexcl

Fig. 3. Inference rules ofTOMATO(excluding a rule described in Section 3.4)

Inference rules We enumerate the inference rules ofTOMATO in Fig. 3. However,
note that there is an additional rule which is concerned with theXe operator in the
left-hand side of ‘→’ of a sequent. It is not shown in Fig. 3 but described in Section 3.4.

For a multi-set of formulasΓ and a unaly operatorK, K(Γ ) stands for a multi-set
of formulas obtained by applyingK for each element ofΓ .

In the∀L rule, t is an arbitrary term. In the∀R rule,y is a variable symbol which
does not occur freely in the conclusion of the rule.

The Xexcl rule means that any subformula of the form shown in the assumption
anywhere in the sequent can be replaced by the formula shown in the conclusion. In
this rule,n ≥ 2, and fori = 1, · · · , n, ψi is ¬X1 ∧ · · · ∧ ¬Xi−1 ∧ Xi ∧ ¬Xi+1 ∧
· · · ∧ ¬Xn, whereX1, · · · , Xn are formula variables that does not occur freely in the
conclusion of the rule. This rule is provided so that we can decompose formulas in the
form of Xe(· · · ) into those in the form ofXer1p1 φ1, by reversely applying it.

TheBEL-KD45 rule, same as in [6, 20], is constructed so that the axiom schemas
KD45 for theBEL operator are ensured to be held. TheµL andµR rules are provided
to enable proofs by loop (see Section 6 for example), such as in [6,20,21].

3.4 Additional inference rule for Xe

In this section, we describe an additional inference rule for theXe operator, which is
not included in Fig. 3.

Let Γ = {Xer1p1 ψ1, · · · ,Xernpn
ψn}, where eachr1, · · · , rn is ≥ or >, andQ =

{ψ1, · · · , ψn}. If a function v : 2Q → [0, 1] satisfies that
∑
Q⊂Q v(Q) = 1, and

(
∑
Q∈{T |T⊂Q,ψi∈T} v(Q)) ri pi holds for eachi = 1, · · · , n, then we callv a prob-

ability distribution function(PrDF) ofΓ . Intuitively, a PrDF determines probabilities
of transitions from a state to next-time states, at each of which a subsetQ of Q holds,
so that for eachψi, the probability thatψi holds satisfiesripi.

For a PrDFv of Γ , we call{Q ⊂ Q | v(Q) > 0} a satisfaction request set (SRS) of
Γ onv, and write it as reqv(Γ ). LetZ be an SRS ofΓ (on some PrDFv). If all elements
of Z are satisfiable, we say thatZ is satisfiable. In general,Γ is satisfiable iff there is a



ψ1, ψ2 → ψ2, ψ3 → ψ3, ψ1 →
Xe

≥.3 ψ1,Xe
≥.4 ψ2,Xe
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Fig. 4.Example of inference rules aboutXe operators

satisfiable SRSZ of Γ .
If, for Z,Z ′ ⊂ 2Q, someQ ∈ Z andZ ′′ ⊂ 2Q exist andZ ′ = (Z ∪ Z ′′) \ {Q}

holds, we writeZ � Z ′. Let�� be a non-reflective transitive closure of�. Note that if
Z �� Z ′ andZ is satisfiable, thenZ ′ is also satisfiable. IfZ is an SRS ofΓ , and there
is no SRSZ ′ of Γ which satisfiesZ �� Z ′, we say thatZ is an essential SRS (eSRS).
SinceQ is finite, there is no infinite sequenceZ1, Z2, · · · s.t.Z1 � Z2 � · · · . As a
result, there exists a satisfiable SRS ofΓ iff there exists a satisfiable eSRS ofΓ .

LetZ1 = {Q1,1, · · · , Q1,m1}, · · · , Zk = {Qk,1, · · · , Qk,mk
} be the enumeration of

all eSRSs ofΓ . Then for any sequence of positive integersj1, · · · , jk, where1 ≤ j1 ≤
m1, · · · , 1 ≤ jk ≤ mk, the following is an inference rule ofTOMATO.

Q1,j1 → · · · Qk,jk →
Γ → X-KD

For example, LetΓ = {Xe≥0.3 ψ1,X
e
≥0.4 ψ2,X

e
≥0.6 ψ3} and Q = {ψ1, ψ2, ψ3}.

Then a functionv : 2Q → [0, 1], wherev({ψ1, ψ2}) = 0.4, v({ψ3}) = 0.6, and
v(Q) = 0 for all otherQ ⊂ Q is a PrDF ofΓ , and reqv(Γ ) = {{ψ1, ψ2}, {ψ3}} =
Z1 is an SRS ofΓ . Z1 is also an eSRS. A functionv′, wherev′({ψ1, ψ2}) = 0.3,
v′({ψ2}) = 0.1, v′({ψ2, ψ3}) = 0.6, andv′(Q) = 0 for all otherQ ⊂ Q is also a
PrDF ofΓ , but reqv′(Γ ) = Z ′

1 is not an eSRS sinceZ ′
1 �� Z1.

In this example,Z1 andZ2 = {{ψ2, ψ3}, {ψ1}} andZ3 = {{ψ3, ψ1}, {ψ2}} (see
the right half of Fig. 1) are all eSRSs. In the tableau method, to show that[Γ →] is
provable, we have to show thatΓ is unsatisfiable. It is equivalent to show that there is
no satisfiable eSRS ofΓ , and also equivalent to show that any eSRS ofΓ has at least
one unsatisfiable element. TheX-KD rule is constructed in this way.

Therefore, in this example, we have 8(= |Z1| · |Z2| · |Z3|) rules, and one of them
is the following.

ψ1, ψ2 → ψ2, ψ3 → ψ2 →
Xe≥.3 ψ1,X

e
≥.4 ψ2,X

e
≥.6 ψ3 →

However, the leftmost two sequents of the assumption of this rule are redundant. After
removing similar redundancies from other rules, we need only 4 rules, as shown in Fig.
4, and the rest 4 can be omitted since the assumption of each of those includes another
rule. (In addition, rules in Fig. 4 except the upper-left-most one can be aggregated into

a single rule
φ→

Xe
≥p φ→, where0 < p ≤ 1.)

Definition of provability A sequentS is said to be derivable from a setL of sequents
if one of the following conditions holds.



1. S ∈ L
2. There is an inference ruleS1, · · · , Sn

S
(n ≥ 0) and all ofS1, · · · , Sn are derivable

fromL

We say that a sequentS is provable if one of the following conditions is satisfied.
Hereφn(X) is defined asφ0(X) = X andφn(X) = φ[X := φn−1(X)].

1. S is derivable from∅.
2. S = [Σ,µX.φ→ ∆] whereX does not occur freely inΣ,∆, and there is a positive

integern s.t. [Σ,φn(X) → ∆] is derivable from{[Σ,X → ∆]}.

A formulaφ is defined to be provable if[→ φ] is provable.

Soundness and completenessIn this section, we first show the soundness of
TOMATO, and then we show a proof sketch to show the completeness ofTOMATO
restricted to propositional logic. A study of the completeness ofTOMATOon predicate
logic is for future work.

To show the soundness, it is enough to show that every inference rule preserves the
validity of sequents, and thatS in the item 2. of the provability definition is valid. The
former is easy; therefore, we show the latter. For any ordinalα and the functionfφ in
Section 3.2, we define a functionfαφ : Swt→ Swtas follows.

f0
φ(x) = x fα+1

φ (x) = fφ(fαφ (x))

fλφ (x) =
∪
α<λ

{fαφ (x)} whenλ is a limit ordinal

Then, if [Σ,φn(X) → ∆] is derivable from{[Σ,X → ∆]}, for any BDI structure and
any infinite ordinalα, [Σ → ∆] holds at any state infαφ (∅). Also, an infinite ordinalα
exists s.t.fαφ (∅) = [[µX.φ]]. Thus[Σ,µX.φ→ ∆] is valid.

Next we show the proof sketch of the completeness restricted to propositional logic.
Without loss of generality, we can assume that any subformulas of the formXe(r1p1 φ1 |
· · · | rnpn φn), wheren ≥ 2 do not occur anywhere in sequents, since we can omit them
by reversely applying theXexcl rule (as described in Section 3.3).

Let Nps be a set of non-provable sequents that have only atomic formulas (i.e.
atomic propositions) and formulas in the form ofµX.φ, Xerp φ, BELa φ, DESIREa

φ, andINTENDa φ in the both sides of ‘→’, but do not have formulas in the form of
Xerp φ to the right of ‘→’. For S ∈ Nps, we definedec-µ(S) as a non-provable sequent
obtained fromS by reversely applyingµL/R, ∨L/R, ¬L/R, X≥R, andX>R rules as
many times as possible. If there are more than one such sequents, choose an arbitrary
one asdec-µ(S). Note that we cannot applyµL/R infinite times because in a formula
µX.φ we do not have anyX outside the scope of modal operators.

RegardingNpsas a set of states, we construct a ‘flat’ version of BDI structure (i.e.
we do not take the set of worldsW into consideration, and all accessibility relations
are binary relations onNps) by the following procedure, which is based on Wang’s
algorithm [20,22] for propositional modal logics.

First, we define binary relationsBa, Da, andIa onNpsfor eacha ∈ A as follows.



– S Da S′ iff we can obtainS′ from dec-µ(S) by applying the following procedure:
1. First, reversely apply Weak todec-µ(S) to leave only all formulas in the form

of DESIREa φ to the left of ‘→’, and only one (iff there is any) of them in that
form to the right of ‘→’.

2. Then, reversely applyDESIRE-KD once to remove outermostDESIREa.
3. Last, reversely apply rules∨L/R, ¬L/R, X≥R, X>R as many times as possible.

– Similar forIa.
– To defineBa, we first defineB′

a in a similar manner to that forDa andIa. Let
BELa+(S) be the set of formulas of the formBELa φ to the left of ‘→’ of se-
quentdec-µ(S), andBELa−(S) be a similar one for the right of ‘→’. Assume that
S = S0 B′

a S1 B′
a S2 B′

a · · · . ThenBELa+(S0),BELa+(S1), · · · , andBELa−

(S0),BELa−(S1), · · · are both monotonically nondecreasing. Therefore, due to the
finiteness of formulas and sequents, there is someSk that satisfies that ifSk B′∗

a

S′ (hereB′∗
a is the transitive closure ofB′

a), thenBELa+(Sk) = BELa+(S′) and
BELa−(Sk) = BELa−(S′). We define thatS Ba S′, S′ Ba S′′ iff Sk B′∗

a S′ and
Sk B′∗

a S′′.

Next we define binary relationsRe onNpsand a functionPe : Re → [0, 1] for each
e ∈ E as follows. Let a sequentS be given.

1. First, we reversely apply Weak todec-µ(S) to leave only all formulas in the form
of Xerp φ in the both sides of ‘→’.

2. Then, reversely applyX≥R andX>R as many times as possible to move all formu-
las in the form ofXerp φ in the right-hand side of ‘→’ toward the left of ‘→’. At this
moment the sequent is in the form of[Γ →], whereΓ is{Xer1p1 ψ1, · · · ,Xernpn

ψn}.
3. Since[Γ →] is not provable, by the construction ofX-KD rule, there is a PrDF
v of Γ and an eSRS{Q1, · · · , Qm} of Γ on v, where none of sequents[Q1 →
], · · · , [Qm →] are provable.

4. Now, we putS Re S′ andPe(S, S′) = v(Qj) iff S′ can be obtained from some
[Qj →] above, by reversely applying rules∨L/R, ¬L/R, X≥R, andX>R as many
times as possible.

Subsequently, for each statet in Nps, we choose an interpretationit of atomic proposi-
tions s.t.it(p) is true iff p occurs to the left of ‘→’ of the sequentdec-µ(t). In addition,
we also choose a functionfV : V → 2Swt s.t.fV(X) 3 t iff X occurs to the left of ‘→’
of the sequentdec-µ(t).

Now we have a ‘flat’ BDI structure. In addition,Ba satisfies KD45, and all other
accessibility relations satisfy KD. We can easily convert it into a normal BDI structure
M .

Then we show that for each statet in M , formulas to the left of ‘→’ of the sequent
t are true att, and ones to the right are false att. We do so only for the formulas of the
form µX.φ at both sides of ‘→’.

Let F be a set of states (sequents) inM , which hasµX.φ to the right of ‘→’. By
the construction method ofM , for any ordinalα, we can show that(fαφ (∅))c ⊃ F (here
Ac denotes a complement set ofA). Therefore,µX.φ is false at any state inF .

Let S be a state (sequent) inM , which hasµX.φ to the left of ‘→’, andS(n) be a
state obtained fromS by replacingµX.φ with φn(X). By the construction method of



M and the finiteness of formulas and sequents, there is a positive integern s.t. for each
sequence of statesS0 A S1 A · · · , whereS0 = S(n) andA =

∪
a,t(Bta ∪ Dt

a ∪ Ita) ∪∪
e,w R

e
w, one of the followings holds4.

i. X does not occur in someSk.
ii. There are somek, ` s.t.Sk = S` andX occurs inSk.

If all such sequences satisfy ii., thenS is provable using the item 2. of the provability
definition, and contradicts the assumption. Therefore, there is a sequence that satisfies i.
above. By the construction ofM , there is also a sequenceS′

0 A S′
1 A · · · , whereS′

0 =
S and which satisfies i., and again by the construction ofM , µX.φ is true atS.

A decision algorithm for propositionalTOMATOcan be directly derived from this
proof of the completeness (if an algorithm to calculate eSRS is provided). We plan to
mention this in the future.

4 Examples of description and proof

4.1 Modeling probabilistic state transitions

We can write the situation in the example of Section 2.1 asat(s1) ⊃ Xe1(≥.7 at(s2) ∧
reward(3) | ≥.3 at(s3) ∧ reward(5)) using the probabilistic transition operator of
TOMATO.

Let φ be this formula. We can confirm that if we are ats1, then after executinge1,
we can surely receive reward 3 or more by provingφ∧ at(s1) ⊃ AXe1 ∃x(reward(x)∧
x ≥ 3), provided that we can prove3 ≥ 3 and5 ≥ 3. The proof is shown in Fig.
5, where we abbreviateat(s2), reward(3), at(s3), reward(5), andreward(x) ∧ x ≥ 3
asp1, q1, p2, q2, andψ, respectively. AnX-KD rule applied between the 3rd column
from the bottom and a column right above it is derived from the fact that all eSRSs of
{Xe1≥.7 ξ1,X

e1
≥.3 ξ2,X

e1
>0 ξ3} are{{ξ1, ξ2}, {ξ3}}, {{ξ2, ξ3}, {ξ1}}, and{{ξ3, ξ1}, {ξ2}}

(whereξ1, ξ2, ξ3 are arbitrary formulas).
Machine learning cannot be performed only by describing in logic, and requires

external tools to do so. However, after learning, we can describe the result as a property
of an agent like the one above. Also, there is a possibility to implement a learning
system within a frame of logic. In this sense, treating such properties in logic has a
positive significance.

4.2 Modeling coordinated actions

J-Can described in Section 2.2 is necessary to describe coordinated actions. However,
in LORA, it can only be written using infinite disjunctions and conjunctions. It is
expressible inTOMATOusing the fixed-point operator.

To describe the first half of the description of(J-Can0 g φ) in Section 2.2 (i.e. “g
4 In other words, the process of reversely applying rules continuously will eventually stop by

entering a loop. That is why our system can have a decision algorithm, despite the lack of
subformula property.



...
p1 ∧ q1 ∧X1 ∧ ¬X2, p2 ∧ q2 ∧ ¬X1 ∧X2 →

6

...
→ 5 ≥ 3

...
p2 ∧ q2 ∧ ¬X1 ∧X2,¬∃xψ →

...
→ 3 ≥ 3

...
¬∃xψ, p1 ∧ q1 ∧X1 ∧ ¬X2 →

Xe1≥.7(p1 ∧ q1 ∧X1 ∧ ¬X2),X
e1
≥.3(p2 ∧ q2 ∧ ¬X1 ∧X2),X

e1
>0 ¬∃xψ →

...
→ φ ∧ at(s1) ⊃ AXe1 ∃xψ

Fig. 5.Example of proof (1)

can execute some actionα andφ is achieved by this action”), we introduce a predicate
Agt s.t.Agt(e, a) holds iff an agenta can execute an evente. We use a list structure in
first-order language to represent a group of agents, and introduce the ‘member’ predi-
cate using its general definition in Prolog, i.e. a non-logical axiom∀x(member(x, cons
(x,nil)) ∧ ∀y∀z(member(x, z) ⊃ member(x, cons(y, z))))5. Then, we can represent
the above-mentioned part asµX.(φ∨

∨
e∈E,a∈A(Agt(e, a)∧member(a, g)∧AXeX)).

(Note:LORA introduces equivalents forAgt and ‘member’ as primordial components
of formulas, and enables the applying of∀ for agents and actions. These reduce the
length of formulas, but complicates syntax and semantics.)

Let ψ be this formula, and abbreviateνX.(ξ ∧
∧
a∈A(member(a, g) ⊃ BELaX))

asE-Knowg ξ, which states that “ξ holds and an agent groupg mutually believes it”.
ThenE-Knowg ψ is equivalent to(J-Can0 g φ). Further, we can represent(J-Can g φ)
by µX.((J-Can0 g φ) ∨ (J-Can0 g X)). By proceeding in this way, we can construct
further descriptions about coordinations of agents like inLORA.

To prove various properties of coordinations is also possible. Fig. 6 is a proof of a
property(J-Can0 g φ) ⊃ E-Knowg(J-Can0 g φ), whose equivalent is represented in
LORA (we assumeA in Section 3.1 be{a1, · · · , an}). Using the above-mentionedψ,
this formula can be rewritten asE-Knowg ψ ⊃ E-Knowg E-Knowg ψ, so we give the
proof of this formula. In that figure, we abbreviate

∧
a∈A(member(a, g) ⊃ BELa ξ)

asBg ξ. Hence,E-Knowg ξ is an abbreviation of¬µX.(¬ξ ∨ ¬Bg ¬X). Furthermore
we abbreviateµX.(¬ξ ∨ ¬Bg ¬X) asnEkg ξ. As a result,E-Knowg ξ is syntactically
equivalent to¬nEkg ξ. In Fig. 6, the topmost column of the rightward proof figure is
derived from the leftward proof figure using the item 2. of the provability definition.

5 Discussions

We have given an extended BDI logic to handle notions required for formalizing realis-
tic rational agents. However, there are more issues to consider, though we do not treat
them in this paper. In this section we discuss some of them.

5.1 Treatment of mental state consistencies

As we described in Section 3.2, we have omitted discussions about mental state consis-
tencies for simplicity. However, mental state consistencies are significant in Bratman’s

5 In fact, the proof in Fig. 6 does not depend on this definition.



...
¬E-Knowg ψ → nEkg ψ

X → nEkg ψ
...

¬nEkg ψ → ¬X
BELa1 ¬nEkg ψ → BELa1 ¬X

...

...
· · · (n branches in total)· · ·

X → nEkg ψ
...

¬nEkg ψ → ¬X
BELan ¬nEkg ψ → BELan ¬X

...
Bg ¬nEkg ψ → Bg ¬X

...
¬Bg ¬X → ¬ψ ∨ ¬Bg ¬nEkg ψ

¬Bg ¬X → nEkg ψ

¬E-Knowg ψ ∨ ¬Bg ¬X → nEkg ψ

nEkg E-Knowg ψ → nEkg ψ
...

→ E-Knowg ψ ⊃ E-Knowg E-Knowg ψ

Fig. 6.Example of proof (2)

intention principle and need to be handled to describe rational agents. For example, the
property that “an agent will not form an intention if she cannot believe the possibility
of achieving it” is said to be one of the required properties of rational agents. In tradi-
tional BDI logic, as in [7, 18], this is written asINTEND(EXφ) ⊃ BEL(EXφ), and
it presents the semantics that make it valid and the deduction system that can prove it.
CurrentlyTOMATOcannot treat such a property. This is for future work.

When considering this, it is also interesting to consider consistency between proba-
bilistic mental state operators mentioned in Section 3.1. For example, when the possi-
bility of achievement ofφ is believed with a probability 0.9, can we intendφ?

5.2 Treatment of probabilistic transitions

The temporal operator inTOMATO is an extension of the next-time operator in CTL
with a probability. This is because we introduced this operator so that we can construct
a proof system base on the tableau method. However, a disadvantage of this is that the
description with the probability is restricted to the transition between current time and
the next time.

In PCTL [14], we can describe the probability on the time sequence (path). In
other words, the probability is given on path formulas. For example, a property “we
can achieveφ not less than the probability of 0.9 in the future” can be written as
[trueU φ]≥0.9. CurrentlyTOMATOcannot describe such a property.

However, as described in Section 2.1, it is difficult to describe event-wise probabil-
ities in PCTL, unlike inTOMATO. Moreover, it is believed to be difficult for PCTL
to create the proof system using the tableau method due to an excessive flexibility of
probability descriptions in PCTL. Even for qualitative PCTL, in which probabilistic
descriptions are restricted to 0 and 1, no deduction system is yet known [23]. To take
the balance of construction of the proof system and flexibility of representation is an
important issue.

5.3 Treatment of stability of mental states

We believe that there are more issues to be considered on BDI logic though we did not
treat them in this paper. For example, mental states, such as belief, should generally be



kept by default. However, there is no such concept in BDI logic in nature. The mental
states in BDI logic are merely modal operators, and represented by accessibility rela-
tions on possible worlds, which vary at different times. Thus, there is no logical relation
between the current belief and the one in the next time. If we want to keep the belief
to some extent, we must explicitly introduce a non-logical axiom such asψ ⊃ A(BEL
(φ) U ξ) (believesφ until ξ holds).

In the standard implementation of BDI agents, mental states, such as belief, are
restricted to first-order formulas, and an agent adds or deletes its mental states in its
database by an event such asadd-belief anddel-belief. The addition and deletion
of her mental states occurs procedurally, so the consistency between it and the logic is
not guaranteed. There are some trials, such as AgentSpeak(L) [24], for bridging this
gap by offering a proof theory about the properties of such procedures. However, they
do not dissolve the un-naturalness of the logic that the mental states are not maintained
by default, nor eliminate the fact that mental states are restricted to first-order formulas
in the implementations.

Mental states are not always expected to be kept; for example, if there is a belief
BEL(AXφ) (believes that “φ in next time”), it would be natural that we haveBEL(φ)
the next time. [25] is one of such studies, though it is based on non-branching temporal
logic and lack of descriptive power is anticipated. It will be interesting to consider how
we treat such things in modal logics.

Some studies treat the updating of mental states as an update of the model itself
instead of time transition. Though such a method is difficult to apply to MDP because
time path is restricted to be unique, it may be also a possibility to handle stability of
mental states naturally.

6 Conclusion

In this paper, we proposedTOMATO, an extended BDI logic with probabilistic transi-
tions and a fixed-point operator, to enable formal descriptions and discussions on ratio-
nal agents with notions such as probabilistic state transitions in reinforcement learning
and cooperative actions in multi-agent environments. We also showed some examples
of descriptions and proofs associated with these notions. Our future work includes a
study of the completeness ofTOMATOon predicate logic, construction of a proof al-
gorithm in propositional logic and to introduce some of the notions described in Section
5, especially the consistency of mental states.

We expectTOMATO to be a productive tool for modeling, designing and imple-
menting rational agents.
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